• Title/Summary/Keyword: Wave force

Search Result 963, Processing Time 0.027 seconds

The effect of root canal preparation on the surface roughness of WaveOne and WaveOne Gold files: atomic force microscopy study

  • Ozyurek, Taha;Yilmaz, Koray;Uslu, Gulsah;Plotino, Gianluca
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.1
    • /
    • pp.10.1-10.8
    • /
    • 2018
  • Objectives: To examine the surface topography of intact WaveOne (WO; Dentsply Sirona Endodontics) and WaveOne Gold (WOG; Dentsply Sirona Endodontics) nickel-titanium rotary files and to evaluate the presence of alterations to the surface topography after root canal preparations of severely curved root canals in molar teeth. Materials and Methods: Forty-eight severely curved canals of extracted molar teeth were divided into 2 groups (n = 24/each group). In group 1, the canals were prepared using WO and in group 2, the canals were prepared using WOG files. After the preparation of 3 root canals, instruments were subjected to atomic force microscopy analysis. Average roughness and root mean square values were chosen to investigate the surface features of endodontic files. The data was analyzed using one-way analysis of variance and post hoc Tamhane's tests at 5% significant level. Results: The surface roughness values of WO and WOG files significantly changed after use in root canals (p < 0.05). The used WOG files exhibited higher surface roughness change when compared with the used WO files (p < 0.05). Conclusions: Using WO and WOG Primary files in 3 root canals affected the surface topography of the files. After being used in root canals, the WOG files showed a higher level of surface porosity value than the WO files.

다방향 규칙파 중 선체, 타, 추진기에 작용하는 유체력 추정을 위한 실험적 연구

  • Seo, Ju-Won;;;;Jeon, Myeong-Jun;Yun, Hyeon-Gyu;Kim, Yeon-Gyu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.4-6
    • /
    • 2018
  • Traditional methods of research on ship maneuvering performance were estimated in calm water. Ship maneuverability in waves is of vital importance for navigation safety of a ship (ITTC, 2008). The accurate estimation of force and moment acting on the ship and rudder behind propeller are necessary because the rudder, propeller and hull interaction is of key importance. In addition, course-keeping ability and maneuvering performance of a ship can be significantly affected by the presence of wave. In this study, the model test is performed in the regular wave in the square wave tank in Changwon National University and the hydrodynamic force acting on the ship hull and rudder behind the propeller in various wave directions is investigated. The effect of wavelength and wave direction on hydrodynamic force acting on ship and rudder behind propeller in regular waves is discussed.

  • PDF

A compensation method for the scaling effects in the simulation of a downburst-generated wind-wave field

  • Haiwei Xu;Tong Zheng;Yong Chen;Wenjuan Lou;Guohui Shen
    • Wind and Structures
    • /
    • v.38 no.4
    • /
    • pp.261-275
    • /
    • 2024
  • Before performing an experimental study on the downburst-generated wave, it is necessary to examine the scale effects and corresponding corrections or compensations. Analysis of similarity is conducted to conclude the non-dimensional force ratios that account for the dynamic similarity in the interaction of downburst with wave between the prototype and the scale model, along with the corresponding scale factors. The fractional volume of fluid (VOF) method in association with the impinging jet model is employed to explore the characteristics of the downburst-generated wave numerically, and the validity of the proposed scaling method is verified. The study shows that the location of the maximum radial wind velocity in a downburst-wave field is a little higher than that identified in a downburst over the land, which might be attributed to the presence of the wave which changes the roughness of the underlying surface of the downburst. The impinging airflow would generate a concavity in the free surface of the water around the stagnation point of the downburst, with a diameter of about two times the jet diameter (Djet). The maximum wave height appears at the location of 1.5Djet from the stagnation point. Reynolds number has an insignificant influence on the scale effects, in accordance with the numerical investigation of the 30 scale models with the Reynolds number varying from 3.85 × 104 to 7.30 × 109. The ratio of the inertial force of air to the gravitational force of water, which is denoted by G, is found to be the most significant factor that would affect the interaction of downburst with wave. For the correction or compensation of the scale effects, fitting curves for the measures of the downburst-wave field (e.g., wind profile, significant wave height), along with the corresponding equations, are presented as a function of the parameter G.

A Far Field Solution of the Slowly Varying Drift Force on an Offshore Structure in Bichromatic Waves - Two Dimensional Problems

  • Lee, Sang-Moon
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.7-12
    • /
    • 2008
  • A far field solution of the slowly varying force on an offshore structure by gravity ocean waves was shown as a function of the reflection and transmission of the body disturbed waves. The solution was obtained from the conservation of the momentum flux, which simply describes various wave forces, while making it unnecessary to compute complicated integration over a control surface. The solution was based on the assumption that the frequency difference of the bichromatic incident waves is small and its second order term is negligible. The final solution is expressed in term of the reflection and transmission waves, i.e. their amplitudes and phase angles. Consequently, it shows that not only the amplitudes but also the phase differences make critical contributions to the slowly varying force. In a limiting case, the slowly varying force solution gives the one of the mean drift force, which is only dependent on the reflection wave amplitude. An approximation is also suggested in a case where only the mean drift force information is available.

Design of Smart flap actuators for swept shock wave/turbulent boundary layer interaction control

  • Couldrick, Jonathan;Shankar, Krishnakumar;Gai, Sudhir;Milthorpe, John
    • Structural Engineering and Mechanics
    • /
    • v.16 no.5
    • /
    • pp.519-531
    • /
    • 2003
  • Piezoelectric actuators have long been recognised for use in aerospace structures for control of structural shape. This paper looks at active control of the swept shock wave/turbulent boundary layer interaction using smart flap actuators. The actuators are manufactured by bonding piezoelectric material to an inert substrate to control the bleed/suction rate through a plenum chamber. The cavity provides communication of signals across the shock, allowing rapid thickening of the boundary layer approaching the shock, which splits into a series of weaker shocks forming a lambda shock foot, reducing wave drag. Active control allows optimum control of the interaction, as it would be capable of positioning the control region around the original shock position and unimorph tip deflection, hence mass transfer rates. The actuators are modelled using classical composite material mechanics theory, as well as a finite element-modelling program (ANSYS 5.7).

Speed-up Design for Overhead-line Considering Contact Force Fluctuations by a Wave Reflection and a Doppler Effect (파동반사와 도플러 효과를 고려한 전차선의 속도향상 설계)

  • Cho Yong Hyeon;Lee Ki Won;Kwon Sam Young;Kim Do Won
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1353-1359
    • /
    • 2004
  • There are many massive components added on the railway overhead-line. These components cause larger fluctuations of contact forces, which are due to wave reflections and Doppler effects when a high-speed train passes those. In this paper, mathematical formula are derived for the relation between the added mass and contact force fluctuations. Using the derived formula, we calculate a added mass on the overhead-line which cause amplification factor to become 2.5. German design practice requires that amplification factor due to the wave reflection should be less than 2.5 to obtain good current collection performance. To show the validity of the formula, simulation results are compared with the calculation results. Simulation results showed that contact force fluctuations grow rapidly when an added mass is larger than the calculation result. Therefore, the simple form of formula can be used for estimating maximum added mass not to cause large fluctuations of contact forces in early design phase.

  • PDF

Experimental Investigation for Evaluating Wave Forces on Perforated Caisson with Two Wave Chambers (유수실이 2개인 유공케이슨의 파력 산정에 관한 실험적 연구)

  • Oh, Sang-Ho;Ji, Chang-Hwan;Lee, Dal Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.6
    • /
    • pp.443-451
    • /
    • 2015
  • Design formula for estimating the wave loading on the perforated caisson having two wave chambers is yet available. In this study, the analysis results are presented with the experimental data for the wave force acting on such a breakwater model. Based on the experimental results, it was able to clarify the variation of wave action according to five different wave phases that are associated with peak wave loading at the three vertical walls. Then the force adjustment factor for double-chamber caisson was estimated, similarly as Takahashi and Shimosako (1994), which needs to be further validated with subsequent experiments and practical application in the field.

Time Response Analysis of Caissons by Installing New Caisson on Existing Caisson Breakwater in Irregular Wave Condition (기존 케이슨방파제에 신규 케이슨 추가설치에 따른 불규칙파 조건에서 케이슨들의 시간응답 평가)

  • Min Su, Park;Young Taek, Kim;Sangki, Park;Jiyoung, Min
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.233-246
    • /
    • 2022
  • The design and the construction were carried out by installing new caissons on the back or the front of existing caissons to increase the structural stability of caisson breakwaters. In this study, we used the ANSYS AQWA program to analyze the wave forces acting on individual caissons according to the effects of wave-structure interaction when new caissons were additionally installed on existing caisson breakwaters. The wave force characteristics acting on the individual caisson were analyzed according to the distance among caissons in frequency domain analysis. In addition, the dynamic wave force characteristics were closely examined on the basis of the frequency at which the unusual distribution of wave forces occurs in irregular wave conditions using time domain analysis.

Load simulation for offshore wind turbine (해상풍력터빈에 대한 하중 모사 방법 연구)

  • Suk, Sangmin;Lee, Sunggun;Chung, Chinhwa;Park, Hyunchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.58.1-58.1
    • /
    • 2011
  • In this paper, the purpose is a study on structural analysis for offshore wind turbine using commercial code. Because offshore wind turbine is subjected to great wind and wave force, it is necessary to analyse the dynamics and minimize the response of wind turbine. The offshore wind turbine tower is modelled as a single degree of freedom and multi degree of freedom structure. It is assumed that the blades, nacelle are composed of concentrated masses.

  • PDF

Wave control fuction and friction damping of a pile-supported floating body (말뚝계류식 부유체의 파랑제어 기능과 마찰감에 관한 연구)

  • 김헌태
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.65-73
    • /
    • 1997
  • The floating body discussed in this study is a 2-D rectangular floating unit supported by four vertical piles at its corners. Structures of this type are frequently seen as floating piers for the crafts in a small harbour. The movement in some modes of motion of such a flating body is fully or partially restrincted by the piles. The authors(Kim et al. 1994) carried out a series of model tests on its wave control function, its motion and the loads on piles. The experimental results showed that a certain degree of intial constriction force which clamps the floating unit in the horizontal direction can effectively reduce the body motion and wave energy without increasing mooring forces. This may be due to the friction forces occuring between the piles and the rollers installed in the mooring equipments on the floating unit. In this paper, we develop a numerical model for the prediction of wave transformation and floating body motions, where the friction force is idealized as the Coulomb friction and linearized into a damping force using the equivalent damping cofficient. This linearization is verified by comparing the results of motions between the linear and nonlinear analysis of the ezuations of motion. We further compare the caculation results by the linear model with the experimental results and discuss the effect of the friction force or the constriction force on body motions and wave energy dissipation.

  • PDF