• Title/Summary/Keyword: Wave energy dissipation

Search Result 127, Processing Time 0.023 seconds

Reflection and Transmission Coefficients by a Surface-Mounted Horizontal Porous Plate (수면 위에 놓인 수평 유공판에 의한 반사율과 투과율)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.5
    • /
    • pp.327-334
    • /
    • 2013
  • The interaction of oblique incident waves with a surface-mounted horizontal porous plate is investigated using matched eigenfunction expansion method under the assumption of linear potential theory. The new boundary condition on the porous plate suggested by Zhao et al.(2010) when it is situated at the still water surface is used. The imaginary part of the first propagating-mode eigenvalue in the fluid region under a horizontal porous plate, is closely related to the energy dissipation across the porous plate. By changing the porosity, plate width, wave frequencies, and incidence angles, the reflection and transmission coefficients as well as the wave loads on the porous plate are obtained. It is found that the transmission coefficients can be significantly reduced by selecting optimal porous parameter b = 5.0, also increasing the plate width and incidence angle.

Energy Loss Coefficient of Waves Considering Thickness of Perforated Wall (유공벽의 두께를 고려한 파의 에너지손실계수)

  • Yoon, Sung-Bum;Lee, Jong-In;Nam, Doo-Hyun;Kim, Seon-Hyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.4
    • /
    • pp.321-328
    • /
    • 2006
  • In the present study extensisve numerical experiments are conducted using the CFD code, FLUENT, to investigate the energy dissipation due to perforated walls for various wall-thickness and flow conditions. A new empirical formula for energy loss coefficient considering the effect of the thickness of perforated wall is obtained based on the results of computational experiments. It is found that the energy loss coefficient decreases as the wall-thickness increases and the maximum coefficient reduction reaches upto 40% of the value calculated using the conventional formulas for the sharp-crested orifice. To check the validity of the new formula the reflection coefficient of waves due to perforated wall is evaluated and compared with the results of existing theories and hydraulic experiments. The result shows that the new formula is superior to the conventional ones.

A Novel Power Frequency Changer Based on Utility AC Connected Half-Bridge One Stage High Frequency AC Conversion Principle

  • Saha Bishwajit;Koh Kang-Hoon;Kwon Soon-Kurl;Lee Hyun-Woo;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.203-205
    • /
    • 2006
  • This paper presents a novel soft-switching PWM utility frequency AC to high frequency AC power conversion circuit incorporating boost-half-bridge inverter topology, which is more suitable and acceptable for cost effective consumer induction heating applications. The operating principle and the operation modes are presented using the switching mode and the operating voltage and current waveforms. The performances of this high-frequency inverter using the latest IGBTs are illustrated, which includes high frequency power regulation and actual efficiency characteristics based on zero voltage soft switching (ZVS) operation ranges and the power dissipation as compared with those of the previously developed high-frequency inverter. In addition, a dual mode control scheme of this high frequency inverter based on asymmetrical pulse width modulation (PWM) and pulse density modulation (PDM) control scheme is discussed in this paper in order to extend the soft switching operation ranges and to improve the power conversion efficiency at the low power settings. The power converter practical effectiveness is substantially proved based on experimental results from practical design example.

  • PDF

A Novel Utility AC Frequency to High Frequency AC Power Converter with Boosted Half-Bridge Single Stage Circuit Arrangement

  • Saha, Bishwajit;Kwon, Soon-Kurl;Koh, Hee-Seog;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.387-390
    • /
    • 2006
  • This paper presents a novel soft-switching PWM utility frequency AC to high frequency AC power conversion circuit Incorporating boost-half-bridge inverter topology, which is more suitable and acceptable for cost effective consumer induction heating applications. The operating principle and the operation modes are presented using the switching mode and the operating voltage and current waveforms. The performances of this high-frequency inverter using the latest IGBTs are illustrated, which includes high frequency power regulation and actual efficiency characteristics based on zero voltage soft switching (ZVS) operation ranges and the power dissipation as compared with those of the previously developed high-frequency inverter. In addition, a dual mode control scheme of this high frequency inverter based on asymmetrical pulse width modulation (PWM) and pulse density modulation (PDM) control scheme is discussed in this paper in order to extend the soft switching operation ranges and to improve the power conversion efficiency at the low power settings. The power converter practical effectiveness is substantially proved based on experimental results from practical design example.

  • PDF

Development of the Global-Korean Aviation Turbulence Guidance (Global-KTG) System Using the Global Data Assimilation and Prediction System (GDAPS) of the Korea Meteorological Administration (KMA) (기상청 전지구 수치예보모델을 이용한 전지구 한국형 항공난류 예측시스템(G-KTG) 개발)

  • Lee, Dan-Bi;Chun, Hye-Yeong
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.223-232
    • /
    • 2018
  • The Global-Korean aviation Turbulence Guidance (G-KTG) system is developed using the operational Global Data Assimilation and Prediction System of Korea Meteorological Administration with 17-km horizontal grid spacing. The G-KTG system provides an integrated solution of various clear-air turbulence (CAT) diagnostics and mountain-wave induced turbulence (MWT) diagnostics for low [below 10 kft (3.05 km)], middle [10 kft (3.05 km) - 20 kft (6.10 km)], and upper [20 kft (6.10 km) - 50 kft (15.24 km)] levels. Individual CAT and MWT diagnostics in the G-KTG are converted to a 1/3 power of energy dissipation rate (EDR). 12-h forecast of the G-KTG is evaluated using 6-month period (2016.06~2016.11) of in-situ EDR observation data. The forecast skill is calculated by area under curve (AUC) where the curve is drawn by pairs of probabilities of detection of "yes" for moderate-or-greater-level turbulence events and "no" for null-level turbulence events. The AUCs of G-KTG for the upper, middle, and lower levels are 0.79, 0.69, and 0.63, respectively. Comparison of the upper-level G-KTG with the regional-KTG in East Asia reveals that the forecast skill of the G-KTG (AUC = 0.77) is similar to that of the regional-KTG (AUC = 0.79) using the Regional Data Assimilation and Prediction System with 12-km horizontal grid spacing.

Beam-Column Junction Type Damper of Seismic Performance Enhancement for Structures (구조물의 내진성능 보강을 위한 보-기둥 접합형 감쇠장치)

  • Noh, Jung-Tae;Woo, Sung-Sik;Lee, Sang-Hyun;Chung, Lan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.855-863
    • /
    • 2009
  • In this study, a beam-column junction type damper is proposed which saves the inner and outer space for the installation of damping devices and allows easy adjustment of control performance The result of the numerical analysis indicated that the displacement response and base shear of a single degree of freedom system by seismic load, El Centro 1940 was reduced with yield moment of the joint hinge and the specific yield moment ratio $\delta$ of the joint hinge existed for the optimal seismic performance. In addition, the dynamic nonlinear characteristics, effects of yielding and dependence of natural period of bi-linear system with the junction type damper is identified. The analysis of multi-degree of freedom system showed that responses of the controlled structures was reduced significantly as the number of a story increases and yield moment ratio decreases when the system is excited by seismic load and sine wave. On top of that, it was also observed that energy dissipation at the joint connected with the dampers was remarkable during excitation.

  • PDF

Seismic stability analysis of tunnel face in purely cohesive soil by a pseudo-dynamic approach

  • Huang, Qi;Zou, Jin-feng;Qian, Ze-hang
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.1-13
    • /
    • 2020
  • To give a solution for seismic stability of tunnel faces subjected to earthquake ground shakings, the pseudo-dynamic approach is originally introduced to analyze tunnel face stability in this study. In the light of the upper-bound theorem of limit analysis, an advanced three-dimensional mechanism combined with pseudo-dynamic approach is proposed. Based on this mechanism, the required support pressure on tunnel face can be obtained by equaling external work rates to the internal energy dissipation and implementing an optimization searching procedure related to time. Both time and space feature of seismic waves are properly accounted for in the proposed mechanism. For this reason, the proposed mechanism can better represent the actual influence of seismic motion and has a remarkable advantage in evaluating the effects of vertical seismic acceleration, soil amplification factor, seismic wave period and initial phase difference on tunnel face stability. Furthermore, the pseudo-dynamic approach is compared with the pseudo-static approach. The difference between them is illustrated from a new but understandable perspective. The comparison demonstrates that the pseudo-static approach is a conservative method but still could provide precise enough results as the pseudo-dynamic approach if the value of seismic wavelengths is large or the height of soil structures is small.

An Isothermal Mganetohydrodynamic Code and Its Application to the Parker Instability

  • KIM JONGSOO;RYU DONGSU;JONES T. W.;HONG S. S.
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.281-283
    • /
    • 2001
  • As a companion to an adiabatic version developed by Ryu and his coworkers, we have built an isothermal magnetohydrodynamic code for astrophysical flows. It is suited for the dynamical simulations of flows where cooling timescale is much shorter than dynamical timescale, as well as for turbulence and dynamo simulations in which detailed energetics are unimportant. Since a simple isothermal equation of state substitutes the energy conservation equation, the numerical schemes for isothermal flows are simpler (no contact discontinuity) than those for adiabatic flows and the resulting code is faster. Tests for shock tubes and Alfven wave decay have shown that our isothermal code has not only a good shock capturing ability, but also numerical dissipation smaller than its adiabatic analogue. As a real astrophysical application of the code, we have simulated the nonlinear three-dimensional evolution of the Parker instability. A factor of two enhancement in vertical column density has been achieved at most, and the main structures formed are sheet-like and aligned with the mean field direction. We conclude that the Parker instability alone is not a viable formation mechanism of the giant molecular clouds.

  • PDF

Seismic Fragility of Steel Piping System Based on Pipe Size, Coupling Type, and Wall Thickness

  • Ju, Bu Seog;Gupta, Abhinav;Ryu, Yonghee
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1200-1209
    • /
    • 2018
  • In this study, a probabilistic framework of the damage assessment of pipelines subjected to extreme hazard scenario was developed to mitigate the risk and enhance design reliability. Nonlinear 3D finite element models of T-joint systems were developed based on experimental tests with respect to leakage detection of black iron piping systems, and a damage assessment analysis of the vulnerability of their components according to nominal pipe size, coupling type, and wall thickness under seismic wave propagations was performed. The analysis results showed the 2-inch schedule 40 threaded T-joint system to be more fragile than the others with respect to the nominal pipe sizes. As for the coupling types, the data indicated that the probability of failure of the threaded T-joint coupling was significantly higher than that of the grooved type. Finally, the seismic capacity of the schedule 40 wall thickness was weaker than that of schedule 10 in the 4-inch grooved coupling, due to the difference in the prohibition of energy dissipation. Therefore, this assessment can contribute to the damage detection and financial losses due to failure of the joint piping system in a liquid pipeline, prior to the decision-making.

Optical Characteristics of CdSe/ZnS Quantum Dot with Precursor Flow Rate Synthesized by using Microreactor (마이크로리액터를 이용한 전구체 유속에 따른 CdSe/ZnS 양자점의 광학특성)

  • Park, Ji Young;Jeong, Da-Woon;Ju, Won;Seo, Han Wook;Cho, Yong-Ho;Kim, Bum Sung
    • Journal of Powder Materials
    • /
    • v.23 no.2
    • /
    • pp.91-94
    • /
    • 2016
  • High-quality colloidal CdSe/ZnS (core/shell) is synthesized using a continuous microreactor. The particle size of the synthesized quantum dots (QDs) is a function of the precursor flow rate; as the precursor flow rate increases, the size of the QDs decreases and the band gap energy increases. The photoluminescence properties are found to depend strongly on the flow rate of the CdSe precursor owing to the change in the core size. In addition, a gradual shift in the maximum luminescent wave (${\lambda}_{max}$) to shorter wavelengths (blue shift) is found owing to the decrease in the QD size in accordance with the quantum confinement effect. The ZnS shell decreases the surface defect concentration of CdSe. It also lowers the thermal energy dissipation by increasing the concentration of recombination. Thus, a relatively high emission and quantum yield occur because of an increase in the optical energy emitted at equal concentration. In addition, the maximum quantum yield is derived for process conditions of 0.35 ml/min and is related to the optimum thickness of the shell material.