• Title/Summary/Keyword: Wave Transformation

Search Result 348, Processing Time 0.023 seconds

Extension of Guilloton's Method for the Calculation of Wave-making Resistance and Velocities at the Vicinity of a Ship Hull(2nd Report)

  • D.K.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.1
    • /
    • pp.17-28
    • /
    • 1987
  • The materials to develop a computer-based method for the wave resistance of a ship within the frame of Guilloton's wedge concept are presented in this paper. A systematic reliable procedure to retrieve the linearized hull corresponding to a given real hull form(the so-called inverse transformation) has been devised. The algorithm based on the present materials produces evidently accurate values of the H-functions, and the wave profiles and the wave resistance coefficients in good agreement with the experimental measurements.

  • PDF

SH-wave propagation in a heterogeneous layer over an inhomogeneous isotropic elastic half-space

  • Kakar, Rajneesh
    • Earthquakes and Structures
    • /
    • v.9 no.2
    • /
    • pp.305-320
    • /
    • 2015
  • The present paper is devoted to study SH-wave propagation in heterogeneous layer laying over an inhomogeneous isotropic elastic half-space. The dispersion relation for propagation of said waves is derived with Green's function method and Fourier transform. As a special case when the upper layer and lower half-space are homogeneous, our derived equation is in agreement with the general equation of Love wave. Numerically, it is observed that the velocity of SH-wave increases with the increase of inhomogeneity parameter.

Wave Transformation in the Intersecting Wave Trains (2방향 파랑하에서 파의 변형)

  • 김경호;조재희;윤영호
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.4
    • /
    • pp.313-320
    • /
    • 1995
  • A numerical analysis on the wave deformation in the shallow water region is performed for the case of two intersecting wave trains of the same frequency on uniformly sloping beaches. This model is based on the consideration of wave energy balance and wave action conservation, and iteratively solved the set of conservation equations of both mass and horizontal momentum. Using the computed results, the wave deformations in accordance with the variation of the parameters luck as incident wave angie and wave height in deep water which influences the variation of wave hight and mean water level under the intersecting wave trains in the shallow water region. are considered.

  • PDF

Analysis of the Hydraulic Behaviour in the Nearshore Zone by a Numerical Model (수치모형에 의한 연안해역 해수운동의 분석)

  • Lee, Hee-Young;Jeoung, Sun-Kil
    • Water for future
    • /
    • v.27 no.2
    • /
    • pp.73-83
    • /
    • 1994
  • The unproper development of the nearshore zone can enhance the diffusion of pollutant in the nearshore zone resulting in unbalanced sediment budget of beach which causes alteration of beach topography. Therefore, it is required to predict the effects of the envirnmental change quantitatively. In this paper, the depth-averaged and time-averaged energy balance equation is selected to acount for the wave transformation such as refraction, shoaling effect, the surf zone energy disipation, wave breaking index and bore, due to wave breaking in the shore region.(Numerical solutions are obtained by a finite difference method, ADI and Upwind. For the calculation of the wave-induced current, the unsteady nonlinear depth-averaged and time-averaged governing equation is derived based on the continuity and momentum equation for imcompressible fluid.) Numerical solutions are obtained by finite difference method considering influences of factors such as lateral mixing coefficient, bed shear stress, wave direction angle, wave steepness, wave period and bottom slope. The model is applied to the computation of wave transformation, wave-induced current and variation of mean water leel on a uniformly sloping beach.

  • PDF

Dynamic Response Analysis of Pneumatic Floating Breakwater Mounted Wave-power Generation System of Oscillating Water Column (진동수주형 파력발전시스템을 탑재한 공기주입식 부유식방파제의 동적거동해석)

  • Lee, Kwang-Ho;Kim, Do-Sam;Jung, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.305-314
    • /
    • 2017
  • Ocean wave energy harvesting is still too expensive despite developing a variety of wave energy converter (WEC) devices. For the cost-effective wave energy harvesting, it can be an effective measure to use existing breakwaters or newly installed breakwaters for both wave control and energy harvesting purposes. In this study, we investigated the functionality of both breakwater and wave-power generator for the oscillating water column (OWC)-type wave energy converter (WEC) installed in a pneumatic floating breakwater, which was originally developed as a floating breakwater. In order to verify the performance of the breakwater as a WEC, the air flow velocity from air-chamber to WEC has to be evaluated properly. Therefore, air flow velocity, wave transformation and motion of floating structure was numerically implemented based on BEM from linear velocity potential theory without considering the compressibility of air within the chamber. Air pressure, meanwhile, was assumed to be fluctuated by the motions of structure and the water level change within air-chamber. The validity of the obtained values can be determined by comparing the previous results from the numerical analysis for different shapes. Based on numerical model results, wave transformation characteristics around OWC system mounted on the fixed and floating breakwaters, and motions of the structure with air flow velocities are investigated. In summary, all numerical results are almost identical to the previous research considering air compressibility. Therefore, it can be concluded that this analysis not considering air compressibility in the air chamber is more efficient and practical method.

Transformation Optics Methodology for Changing the Appearance of an Object

  • Li, Yanxiu;Kong, Fanmin;Li, Kang
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.321-324
    • /
    • 2016
  • Transformation optics methodology provides a new pathway for designing novel devices. It is based on changing a material’s permittivity and permeability. A design for changing the appearance of an object by transformation optics methodology is proposed here. Through a certain transformation, the relations of the metric spaces and the calculation of the material parameters are derived, and the aim of changing the apparent size of an object can be realized. Full wave simulations are performed to validate the proposed device’s performance. It is possible to think that the methodology will improve the flexibility of designing interesting applications in microwave and optical regimes.

Wave Transformation Due to Energy Dissipation Region (에너지 감쇠영역으로 인한 파랑변형)

  • 윤종태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.3
    • /
    • pp.135-140
    • /
    • 1999
  • To simulate the wave transformation by an energy dissipation region, a numerical model is suggested by discretizing the elliptic mild-slope equation. Generalized conjugate gradient method is used as solution algorithm to apply parabolic approximation to open boundary condition. To demonstrate the applicabil-ity of the numerical procedure suggested, the wave scattering by a circular damping region is examined. The feature of reflection in front of the damping region is captured clearly by the numerical solution. The effect of the size of dissipation coefficient is examined for a rectangular damping region. The recovery of wave height by diffraction occurs very slowly with distance behind the damping region.

  • PDF

Ebersole-Type Wave Transformation Model Usiog Extended Mild-Slope Equations (확장형 완경사방정식을 이용한 Ebersole형 파랑변형 모형)

  • Jeong, Sin-Taek;Lee, Chang-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.845-854
    • /
    • 1998
  • Following the approach of Ebersole (1985), water wave transformation is predicted using the eikonal equation and transport equation for wave energy which are reduced from the extended mild-slope equation of Massel (1993), and also the irrotationality of wave number vectors. The higher-order bottom effect terms, i.e., squared bottom slope and bottom curvature, are neglected in the study of Ebersole but are included in the present study. It was expected that, if these terms are included in this study, the approach would give more accurate solution in the case of rapidly varying topography. But, the expectation was frustrated. It is probably because, in the case of rapidly varying topography, the diffraction effect which is included in the eikonal equation does not work well and thus the solution is deteriorated.

  • PDF