Browse > Article
http://dx.doi.org/10.3807/JOSK.2016.20.2.321

Transformation Optics Methodology for Changing the Appearance of an Object  

Li, Yanxiu (School of Information Science and Engineering, Shandong University)
Kong, Fanmin (School of Information Science and Engineering, Shandong University)
Li, Kang (School of Information Science and Engineering, Shandong University)
Publication Information
Journal of the Optical Society of Korea / v.20, no.2, 2016 , pp. 321-324 More about this Journal
Abstract
Transformation optics methodology provides a new pathway for designing novel devices. It is based on changing a material’s permittivity and permeability. A design for changing the appearance of an object by transformation optics methodology is proposed here. Through a certain transformation, the relations of the metric spaces and the calculation of the material parameters are derived, and the aim of changing the apparent size of an object can be realized. Full wave simulations are performed to validate the proposed device’s performance. It is possible to think that the methodology will improve the flexibility of designing interesting applications in microwave and optical regimes.
Keywords
Transformation optics; Coordination transformation; Anisotropic media; Metamaterial;
Citations & Related Records
연도 인용수 순위
  • Reference
1 U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8, 247 (2006)   DOI
2 U. Leonhardt, “Optical conformal mapping,” Science 312, 1777-1780 (2006).   DOI
3 J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006).   DOI
4 R. A. Crudo and J. G. O'Brien, "Metric approach to transfor­mation optics," Phys. Rev. A 80, 033824 (2009).   DOI
5 U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” Prog. Opt. 53, 69-152 (2009).   DOI
6 N. Kundtz and D. R. Smith, “Extreme-angle broadband meta­material lens,” Nat. Mater. 9, 129-132 (2010).   DOI
7 D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).   DOI
8 F. Zolla, S. Guenneau, A. Nicolet, and J. Pendry, “Electro­magnetic analysis of cylindrical invisibility cloaks and the mirage effect,” Opt. Lett. 32, 1069-1071 (2007).   DOI
9 M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invarian coordinate transfor­mations of Maxwell’s equations,” Photon. Nano. Fund. Appl. 6, 87-95 (2008).   DOI
10 D. H. Kwon and D. H. Werner, “Transformation optics designs for wave collimators, flat lenses and right-angle bends,” New J. Phys. 10, 115023 (2008).   DOI
11 D. Roberts, N. Kundtz, and D. Smith, “Optical lens com­pression via transformation optics,” Opt. Express 17, 16535-­16542 (2009).   DOI
12 M. Tsang and D. Psaltis, “Magnifying perfect lens and superlens design by coordinate transformation,” Phys. Rev. B 77, 035122 (2008).   DOI
13 M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).   DOI
14 J. Huangfu, S. Xi, F. Kong, J. Zhang, H. Chen, D. Wang, B. I. Wu, L. Ran, and J. A. Kong, “Application of coordinate transformation in bend waveguide,” J. Appl. Phys. 104, 014502 (2008).   DOI
15 A. Nicolet, F. Zolla, and S. Guenneau, “A finite element modelling for twisted electromagnetic waveguides,” Eur. Phys. J. Appl. Phys. 289, 153-157 (2004).
16 J. Allen, N. Kundtz, D. A. Roberts, S. A. Cummer, and D. R. Smith, “Electromagnetic source transformations using superellipse equations,” Appl. Phys. Lett. 94, 194101 (2009).   DOI
17 M. Rahm, D. Roberts, J. Pendry, and D. Smith, “Transfor­mation-optics design of adaptive beam bends and beam expanders,” Opt. Express 16, 11555-11567 (2008).   DOI
18 P. H. Tichit, S. N. Burokur, and A. de Lustrac, “Waveguide taper engineering using coordinate transformation technology,” Opt. Express 18, 767-772 (2010).   DOI
19 Z. H. Jiang, M. D. Gregory, and D. H. Werner, “Experi­mental demonstration of a broadband transformation optics lens for highly directive multibeam emission,” Phys. Rev. B 84, 165111 (2011).   DOI
20 W. Lu, Z. Lin, H. Chen, and C. Chan, “Transformation media based super focusing antenna,” J. Phys. D 42, 212002 (2009).   DOI
21 Y. Luo, J. Zhang, L. X. Ran, H. Chen, and J. A. Kong, “Controlling the emission of electromagnetic source,” PIERS Online 4, 795-800 (2008).   DOI
22 P. H. Tichit, S. N. Burokur, and A. de Lustrac, “Transfor­mation media producing quasi-perfect isotripic emission,” Opt. Express 19, 20551-20556 (2011).   DOI
23 B. I. Popa, J. Allen, and S. A. Cummer, “Conformal array design with transformation electromagnetics,” Appl. Phys. Lett. 94, 244102 (2009).   DOI
24 P. H. Tichit, S. Burokur, D. Germain, and A. de Lustrac, “Design and experimental demonstration of a high-directive emission with transformation optics,” Phys. Rev. B 83, 155108 (2011).   DOI
25 P. H. Tichit, S. Burokur, D. Germain, and A. de Lustrac, “Coordinate transformation based ultra-directive emission,” Electron. Lett. 47, 580-582 (2011).   DOI
26 P. H. Tichit, S. N. Burokur, and A. de Lustrac, “Reducing physical appearance of electromagnetic sources,” Opt. Express 21, 5053-5062 (2013).   DOI