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Abstract

ment with the experimental measurements.

Notations

: the rectangular coordinates with verti-

cally downward z-axis and the static
free surface as the z—y plane

. the isobar undulation from its static

level

- the free stream velocity or equivalently

the speed of ship

: acceleration due to the gravity

: the strength of a wedge, £/m (=

tand), 4°:the second difference of

offsets

: the distance between two neighbouring

stations, the length of parabolic part
of the vertex line of a rounded wedge
(see Fig. 4B)

. the distance between waterlines, the

width of a wedge=2n

: the a-component of the disturbance
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Extension of Guilloton’s Method for the Calculation of Wave-making
Resistance and Velocities at the Vicinity of a Ship Hull (2nd Report)

The materials to develop a computer-based method for the wave resistance of a ship within the
frame of Guilloton’s wedge concept are presented in this paper. A systematic reliable procedure to
retrieve the linearized hull corresponding to a given real hull form (the so-called inverse transfor-
mation) has been devised. The algorithm based on the present materials produces evidently accurate

values of the H-functions, and the wave profiles and the wave resistance coeflicients in good agree-

velocity

: the z-coordinate of the vertex line of

a wedge, used to denote the vertical

position of a wedge

: g/U? the wave number
: the Froude number of the ship
. offsets of a hull

offsets of the trial linearized hull, the
object real hull and the achieved real

hull respectively

. pressure

1. Introduction

The present paper contains the outcomes of research

carried on since the publication of the first report(1]

under the same title.

The expressions (cf. Appendix) 1o calculate the

values of the H-function for a rounded wedge are

incorporated in the present paper and has been used for

the analysis of the wave characteristics of the Wigley’s
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parabolic model. One reason why Guilloton’s method
is not widely accepted in the practical applications
inspite of its superior accuracy and economics of
computation may render to the unavailability of readily
usable tables for the function or, equivalently, an
algorithm to calculate the function values. As is well
known(2], a pair of homologous hull forms is assumed
in the application of Guilloton’s method; one being
what is called the linearized hull for which the cale-
ulation is performed and the other being the real hull
for which the calculated results hold. Another reason
may be attributed to the fact that a systematic proce-
dure to find the linearized hull which is homologous
to the given real hull is yet to be devised. Emerson [33
showed a way for this but some improvement seems
to be required before it can be incorporated in a
computer-based numerical processing.

These two matters are the main objects of the
present paper. To provide the algorithm, the expression
of the derivative of Michell’s potential for a wedge,
whether it is a sharp one or a rounded one, is heavily
manipulated to make the maximum use of analytical
integration. It is unexpected reward that a few aspects
of the singular behaviours of a wedge which are
hidden in the original expression under the multiple
The

procedure to find the linearized hull from a given real

integrals are disclosed in this manipulation.

hull cannot but be an iterative one on view of the
nonlinear characteristics of the involved substance

which will be apparent in due course. An intuitive
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simple scheme is introduced in the present paper
which has proved to work satisfactorily. The basic
strategy is that the difference between the hull achi-
eved from a trial linearized hull and the given real
hull should be the correction to the trial linearized
hull. The given real hull itself can be used as the
initial trial linearized hull in the process.

The present method is restricted to the calculation
of the wave-making resistance. The expressions for
the disturbance velocity components off the hull surface
are more opposing to analytic integration, although
they appear to be more submissive to numerical inte-
gration, than the expression for the wave elevation
on the hull surface is. This problem will take some
more time and efforts.

Some awkwardness might be felt if one wishes to
apply the present method to the design of a hull with
curved bow and stern profile because the nose of a
wedge is a vertical line. Increase of the number of
wedge layers may sufficiently overcome this deficiency.
However, the existence of a large bulb creates a real
trouble since superposition of wedges cannot adequately
represent a bulb-shaped volume on account of the

intrinsic geometical property of a wedge.
2. Evaluation of the wedge function
The disturbance velocity created by a wedge is fully

Within the scope of
only the longitudinal component,

described in the reference{1].

the linear theory,

Table 1A The values of 1, 000H /x> for a rounded full wedge

position of the wedge a=n
position of the calculation z2=27
m

0.5 1.0 } 1.5 | 2.0
x P L T e A R
2| methods \0.23[0.5’1.011.5]2.0 0.5‘1.0‘1.5{2.0‘0.40{ 1.5]2.0[ 1o | 20
0.1 | Guilloton 387 206| 414 465 450 356% 399; 465 450, 388 441 450l 412 416
present 378 313 420 481 458 376 420 472 453 406 456 444 424 431
0.5 | Guilloton 206 171/ 156 165 176 182 15§ 166 176 174 16g 176, 172 173
present 205 176 163 170 181 185 165 171 180 178 171 179 178 177

! | ‘ : -°
Lo | Guilloton 133 117] 98 95 95 118 106 97 97 112 100 99[ 111‘ 100
| prisent 131 121 109 104' 107 122 110 104 102 117 105 102 113 102
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Table 1B The values of 1,000H/#* for a rounded half wedge
position of the wedge a=0
position of the calculation z=0

m

0.5

|

1.0

1.5

|

2.0

Co x | oe!
i [ methods \[ 0 1 0.25 0.5} 0

jo.5[1.0} 0 [0.755 15| 0 J.ojz.o[ 0 |1.25I 2.5

0.1 | Guilloton 278| 606 659 321 582 457 321 507 318 306 443 2100 287 304 189
present 270/ 592 635 3120 565 4461 309, 495\ 317| 206 434 239 o278 386 1ss
0.4 | Guilloton 128 278 352 158 325 340 173 317 289 175 307 237 178 285 101
present 128/ 277 354 156 321| 344 1700 321 202 175 307 240 176 287 195

|
o | Guilloton 92| 182 245 111 224/ 268 120 248 245 120 2390 213 132 230 179
present 95| 188 246 113 227 267 124 240 248 130 239 218 133 232 185

regardless of the other two, of this disturbance velocity
induced at points on the hull surface is necessary for
the calculation of the wavemaking resistance or the
isobar curve.

In connection with the associated isobar undulation,
Guilloton defined H-function of a wedge as the

following equation shows.

The function H consists of one double and two single
integrals. The double integral as it would appear by
the expressions in the reference(1] is not a convenient
form for numerical integration. The two infinite upper
limits and the disguised singularity, in some cases, of
the integrand can be pointed out as the reasons. An

actual application of a quadrature quite strikingly

v H o reveals numerical unsteadiness which is obviously
=2 — —— . B
¢ g n related to these reasons. It is desirable therefore to
or equivalently u:.‘ZUFi 2 change this integral to a more convenient and less
n
/’r\
! 5
i
- e torms H |
_____ 5 intrgral of ea. (A7) / \
—_————— tho

position of the c

tegral cf en.(n?) / ‘

o integral of eq. (A7)

0

u .
VLA
*g

Fig. 1 Example of H/n cu
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Fig. 2 Example of H/n curve of a sharp half wedge

Fig. 3 Enlarged view of the neighbourhood of the origin of the Fig. 2
Journal of SNAK, Vol. 24, No. 1, Marchk 1987
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error-inducing form for the numerical integration,
singling out the singularities, if any, at the same time.
The details can be found in the Appendix. It can be
noticed that a logarithmic singularity does exist when
the point of calculation lies on the nose line of a sharp
wedge. This is in fact an expected result because it
is a well-known fact that the velocity of an ideal fluid
becomes infinite at a place where the stream meets a
solid boundary whose tangent has a non-zero angle
with the direction of the stream. Even in the case of
a rounded wedge, the integrand itself diverges when
the point of calculation lies on the nose line, although
the integral can have a finite value. This means that
the position of an isobar at the both ends of a model
where sharp wedges are to be placed cannot be deter-
mined by the wedge method. However, in reality,
this fact may be taken without so great pessimism
since, as can be noticed from Fig. 1,2 and 3, the
divergence of the double integral occurs within quite
narrow, in the case of a sharp full wedge, and extr-
emely narrow, in the case of a sharp half wedge,
neighbourhood of the origin. If necessary, employment
of interpolation technics can be a good remedy for a
sharp full wedge. In the case of a sharp half wedge,
Fig. 3 shows that it is reasonable for practical purposes
to ignore the rapid oscillation and to take zero as its
value at the origin.

Some examples of the values of H-function obtained
by the present method are shown in Table 1 together

with Guilloton’s own values(4] for comparison.

3. Wedge system and superposition

3.1. The Guilloton model
To evaluate the values of Michell potential, the wave
number K should be fixed. Guilloton chose 2.5m for
U?/g (=K-') in developing his wedge method. The
length of the model presumed in the process of ana-

lysis is then

.
L=25 ()

to maintain the identity of the Froude number. The
geosim model determined in this way will be referred
to by ‘the Guilloton model.’

KEEREEEE $24% 158 19874 37

nose line

K @ Lue reference poins

T=tand : the strerngth

(A) a sharp wvedge

(B} a rounded wedee
Fig. 4 The notations of wedge

3.2. The wedge system
The Guilloton model is to be represented by the
superposition of a number of wedges. It is convenient
to place these wedges at the junctions of equally spaced
waterlines and stations except those to be placed at
the bow and the stern. The details of how an arbit-
rary hull form is decomposed into the wedge system
can be found in the reference [1]. The position of
a wedge is referred to by the coordinates of the refer-
ence point of the wedge, this being the point where
the straight part of the vertex line meets the flat base
surface. The terminologies and parameters concerned
with wedges are shown in Fig. 4.
3.3. The superposition
The isobar elevation at the reference point (x;,z:)

of the i—th wedge due to the j—th wedge will be

2 ‘.
Cu=2~—~U F:‘—*H" @
£ nj
where H;j=H(xi, zi; ), 2;) (5)

(z;,z;) being the coordinates of the reference point of
the j—th wedge. Then, the isobar elevation due to
the whole wedge system to represent the model can

be obtained by superposition as follows
U X
4ETH z:’):2—~~_2 F,'Hij/?l,‘ 6)
g =1

Normally the width of wedge is the same for all
the wedges. If this is so, #; can come out of the
summation symbol in the above expression and H,;

alone is what may be called the influence coefficient.
4. Hull form transformations

4.1. The transformation
Guilloton argues that the isobar obtained by eq.(6)
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is valid not for the real hull but for what is called
the linearized hull because the influence coefficients are
evaluated by the formula of the linearized theory. He
proposes the following transformation to achieve the
real hull for which the caleulated results are thought
to be valid: at a waterline z=a

(a) the longitudinal variation

(b) the lateral variation
nlx, a—L(zo, @) ) =no(x0, @) (8
The two corresponding points, one (z,, 70, @) repre-
senting the linearized hull and the other (z, », a—10)
representing the real hull, are referred to the homo-
logous points. This transformation of the hull form
brings in the following effects
(a) on the isobar curves;
{(z, @) =Co(xo, @) that is, the phase shift
(b) on the offsets of the hull;
contact of the hull surface with the isobar.

The above process to achieve the real hull from a
linearized hull is referred to by the forward transfor-
mation or just the transformation. It is to be noted
that not only the offsets but the length of the model
change by this transformation.

4.2. The inverse transformation

Since the results calculated for a linearized hull are
applicable to the real hull achieved by the transfor-
mation just described, and the hydrodynamic charac-
teristics of this real hull is actually the matter of inte-
rests, a process to find the linearized hull corresponding
to a given real hull is of an absolute necessity. This
process is what is denoted the inverse transformation.
Unlike the forward transformation, this is inevitably
to be an iterative process such as Emerson’s trial-and-
error method[3].

The process devised in the present paper for the
inverse transformation can be summarized as the
following:

(1) Assume a trial linearized hull.

* The object real hull may be the natural choice
for the initial trial linearized hull.

* For the consccutive iterations, this is determined
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at the stage(7).
(2) Construct the influence coefficients matrix.
(3) Calculate the wedge strengths.
(4) Determine the isobar curve by the eq. (6) at
each waterline.
(5) Find the real hull implied by this trial linea-
rized hull.
* This step is the forward transformation.
(6) Compare this achieved real hull with the object
real hull.
(7) If the difference is too great, find the new trial
linearized hull by
* the offsets
Ordin=@r.)i+o.r.— (7a.r.):] €)]
* the length
(Lr.r)in=(Lr.)i+ Lor,— (La.r.)i) (10
The quantities in the brackets in eq. (9) and (10)
are corrections for the next iterative step. As a con-
servative policy, only so many percent of the required
correction may actually be made. This policy can help
the convergence. As the Froude number becomes
higher, the experiences show that less proportion of

the correction is desirable.
5. The wave-making resistance

The wave-making resistance of the model is calcu-
lated by integrating the force due to pressure on the
longitudinal projection of the model as the following

equation shows.

Rm:Zf:[(fi’c,_,_sz)ForeBody
1(;[:/.,.1)‘]2).&!1 Body}dy

B z,)
=2 [ 1 @ —tan)dpdy (an

This inegration should bhe performed on the achieved
real hull. In the process of integration, the keel may
be assumed to be identical for both the linearized

hull and the real hull, and, in addition to be an isobar.
6. The results and comparisons

Wigley’s parabolic model used by Emerson[3], and

Shearer and Cross[5) has been chosen as a test case

Journal of SNAK, Vol. 24, No. 1, March 1987
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Fig. 5 Calculation of the wave-making resistance

of the present method, the easy access to the experi-
mental data and the results obtained by other methods
being the incentive. This was one of the models
selected for the workshop organized by DTNSRDC in
1979(6).

In the process of the analysis, to save the computing
time, the elements of the influence coefficient
matrix concerned with the sternmost wedges were
determined by interpolation than by evaluating the
integral in each, except the first, iteration. Because
the relative positions of the wedges need not vary
from iteration to iteration except those in connection
with the sternmost wedges, the other elements remain
unaltered. This means that every column and every
row corresponding to a sternmost wedge of the matrix
should be replaced by new values in a new iterative
step. Let Hn, be taken as an example in which m
denotes a non-sternmost wedge and » a sternmost wed-
ge. Since the shape of the isobar curve created by the

n-th wedge on the waterline where the m-th wedge

lies does not change although the longitudinal position
of the m-th wedge relative to the n-th wedge varies
everytime in the iteration, it is possible to evaluate
H.,., by interpolation in each iteration from the isobar
curve determined once for all.

More iterations were needed as the Froude number
increased to find the linearized hull which would
produce the achieved real hull that was within a
pre-specified error range from the given real hull.
This error range was defined as the ratio of the maxi-
mum difference of offsets between the achieved hull
and the given hull at the same position to the beam
of the given hull. A typical value was 1075

At the final step as well as during the iteration,
the positions of the sternmost wedges do not make the
same profile as the stern of the given hull. Further-
more the length of the corresponding linearized hull,
assuming that it is defined in a reasonable manner,
would be different from that of the given real hull.
This fact raises a question about what space the Froude
number identity must be conformed to in. Depending
on the choice a different set of results would be obta-
ined. This dilemma is inevitable once we accept
Guilloton’s space transformation to which merits of
the method are believed to owe. In this paper the
Froude number identity is assumed to be observed in
the real space without any rational but the practical
reason that if the Froude number is to be defined in
the linearized space the influence coefficient matrix
has to be re-constructed in each iteration which will
make the problem too much entangled.

Some difficulties have been experienced in the nu-

Fig. 6 Wave elevation of Wigley's parabolic model projected to the

KECENEEE $248 £ 19 19874 34
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{LO}CW" e ; calculated by the present method
——; envelope o7 the experimental data [6]
2 T
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Fig. 7 Wave-making resistance coeffiicients of Wig-
ley’s parabolic model

merical integration of {-curve with respect to pressure
(eq. 11) on account of the fact that the y-coordinates
following the £-curve on the body plan are not always
in sequential order. Some errors on the wave-making
resistance are included in the present results on this
account,

The calculated results are presented in the forms of
the surface wave elevation (Fig. 6) and the wave-
making resistance coefficients (Fig. 7). The calculated
wave elevation is in good agreement with the measured
one. This agreement was better with decreasing Froude
number. The most prominent discrepancy however
appears at the neighbourhood of the bow. This was
observed to be a general trend. It is believed that this
discrepancy has some relation with the singular beha-
viour of the integrand described previously and might
be improved in that connection.

The calculated wave-making resistance coefficients

show a general tendency that the present method

n
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predicts a low wave-making resistance. Although the
overall assesment may be summarized as excellent
there are places not totally satisfactory. This must be
attributed to the unsatisfactory numberical integration
of the pressure curve rather than to the intrinsic
property of the method. It was felt to be certain that,
with an improved capability of the interpolation
routine, more accurate values of the resistance coeffi-

cient can be obtained.
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Appendix

It can be seen from the reference[1] that the z-component of the disturbance velocity induced at a point

(z,0,2) by a wedge whose reference point is located at (xo, 0,a) are, after some arithmetic works, as the

following;
(1) the rounded full wedge

u(z,0,2;x0,0,a) :2UF%H(1', 220, @)

—spyr i

= e YT —cos(nr) ]

{4K2

n

nzm»fo fo o Vot 7 (g K?r?)

[COS(TZ) _% sin (rz)] [cos(ar)
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——~—sm (ar)]cos[a (x—xo) ] sin

2 x/2
- dadr — f e K(z+a)sec2a(e—-l(nsec’a

KZ

2 . . Km 2 /2 2, 2
—2+eKnsec’)sin (K (x—xo) seca) sm( 5 seca)cosaada—f— o f g~ Kiztalcosa((g-Kancos’a
7 0

~2—I-e""°°s’“)cos[K(z—xo)cosa]sin< Km cosa)sec‘ada} (AD

The expression within the curly brackets is the Guilloton’s H-function for a rounded full wedge. The double
integral can be changed to the form shown below (writing z instead of z—xo which is equivalent to taking the
origin of the local coordinate system at the intersection of the vertical line passing through the reference point
of the wedge and the calm free surface);

Yo i ol 2
{f fo 'g—j/(;—{_%a;cislgrz)] { os(7z) — Kr sm(rz)] [COS([IT)-"I%‘SHI (ar)]cos(o.t)%m

:_—WTIW {(z-l—a)[sinh‘ n[2(z+a)+n)

dodr) o

16K*

-m/2 Gratm) YOz 0+ Gt t (z+a) V(12| Fp)°+(z+atn)?
Pt w2ty -n) i
TSR V(I z F W F et a—m)+ (zha— n>~/(|z|+m2+(z+a)2]
+n[sinh‘1 dnlzia)
(zta+n) V(x| +wi+Eta—m)i+ (z+a—n) V(x| + 1)+ (z+atn)?

—ginh-t (zmatn) Vz| Fp)+(z—a—n)P—(z—a—n) Jﬂxl+p)2+(z—a+n)2]

(lz| +p)*
(—atn) V([z[+m*F G—a)’—(z—a) Y(z| +1)°+ (z—at+m)?
—(z—a)[smh -1 P R
1 = V(2 i ma—n)t—(z—a—n) Y (x| + )+ (z—a)?
sinh™ el Fw? J e

ol (21 R ( 21+ 2+ Geratwr 2 (12 + 5 )+ rar +f o1+ ™ bt any
=7+ armr 2 (e 4 ) e = (114 ) + am?]
~(1e=-B) (e =2 +rat w2 (1215 )+ Grarey (121 =5 ) + Gra—m)?
~J( =T temarmrray (121 =) + ety (1o - 5) + G—a—n?]

(121 + 2 (121=5) + Grasn?=(121=5) (121 +5) + ctarmr

+(z4+atn)? sinh7t > LN 8L

(zFatn)?
—9(z+a)? sinh~! (12143 )‘/("' )“z*::“)(z"’ %‘)\/("H >+(z+a)2
+ (2 +a—n)? sinh1 7(|inl+’§)\/(|x| )H”“(:}; g;'_%)‘/.(—"fwg)iﬂ”“””)i
~(z4a+n)2sinh—1,,,(\’|+‘2>‘/(“‘" )* e "(':”);Sf' )\/(lrl+ )ﬂz,_,‘f,ﬂ)i
+2(z—a)2sinh-t(@'f%),\/,('”'T,ﬁ) e (‘;) :)(2'”" )\/ ("H%)Z;(;_ o
eay? sinh G W (1el =) + e n>2(z (lun;’”)\/(m];@ﬁzm}

KRB et H24% ¥ 1% 19874 35
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b [ e [2ERL ) e ign(101-8)
L s o [ Setau) a)

n nryf {(Ix\er)l (ztatv) 1+ ¢I¥&;)+<|x|-ﬁ>l (zta—v) 1+ ¥1tu®)

8K* (z+a—») (1+ V1+ud) (z+a+v) 1+ Vitud)
lz|+2 +(z+a+v) «/H—ul Zl—i—(z—{—a—u) V1Fuld
(z+a+v)ln —— (z+a~v)ln
Iz1-7 4 etat) VITu? |2+ 2+ (ba—v) VI
Wher1l.r|>2
. [121+ 24 (eats) vIFur |[|l2] =T+ Gerarts VTFadt | las
(z+a+v)n (Fats)? - ——
[|I|+ +(z+a'v)«/1+uz }Hlxl —a‘—I—(z—i-av») Vit
L —(z+a—y)In- - S et
) Fra—vy when |xl<7 (A2)
with the notations;
w=(1zl+ 2/ Graty) w=(121+7)/ ram) w=llzl =l Grar) w=llzi=F/Graw
€1=|$|+%+w(z+a+u) é’z—|x|*-¥ wl(z+atv) 33:|$|+-’g+a)(z+a—p) e4:|z|+%~w(z+a—p)

e;:EIxI —%Hw(z%—a%—u) %= | x| —%

The integrand of the first term as (lx| -+ —0 is
(a) when z>a-+n or 0<z<la—n

n n
(z-}-a)[ inh-! (zjiJLZ) inh-1 <i+:,2A> h-1- 2n(z+a)
s (z+a)(z+a+tn) —sin (z+a) z+a—n) } Fasin (z+a)2—

Jemal[s R i Y I (Gl 7 B AP I
r—aj| s lz—al(z—al+a) S 1o g (z—al —n) 7510 (z—a)?—n?

(b) when a-n<z<a+n

7z<z+a+zl—>
e S A A Y _ 2n(z+a)
(z+a)[smh ! (eta) Getatn —sinh™! CEDICET Ry +#nsinh™? e ra) =

<|z aH-f)
—|2—al sinh~! e=al (2= a‘+n)T|Z al lnt lz—al —znlnd(n+1z—al) —(z—~lz—aD)In(n—|2z—al)

+n—lz—aIn(lz|+w)?
with the understanding that limesinh! ‘i":() and lim elne=0.
€0 €0
(2) the rounded half wedge

u(x,0,2;20,0,0)=2 UF% H(zx, z;x0,0)

21,2 (a“—’-—KZT?) o

— n_r—_;éggnr) }cos[o (x—zo) ] sin 29 jedr

T2 K
— —7[;12-1(—2 J-D g~ Kzsec’a(gmKnsec’a | Kysecla—1)sin (K (x —xo)seca) sin<\ e seca>c053a da

2
2

T/2 K
+ *;mj@‘fo e"‘“"s’“(e"‘"‘“s?“+Kncosza—1)cos[K(:r—xo)com]sin(—:zﬁcoscl')sec‘ada}y:o

—w(z+aty) e1:;le "%[‘f‘ﬂ)(%%‘a*u) eS:\IxI —»%imw(z%-afu)

(A3
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The double integral can be changed, with the same arrangement as the previous case, to the following form;

cos(nr)  ar—sin(ar)

{ f fo Vg ie;yz::ﬂKgr 5 [cos(rz) - *1%2; sin(rz)] [ o= PO Kr ]cos(ax) sm%dadr}

Vito? _ 2n (]t _
vlzii Lo (w—ﬁwcsch o, )]

‘ng

- cler )

Iz»—nl 040

k3 " inh-lg, — — sinh~lg,- m g BTV ~ly,
+WIO[K(z+v)s1nh 1y —K(z—v)sinh~ ', +—K<|x|+2>(csch u) o csch uu)

%, —Kwe, _ ,—Kue, %, — p—Kwe, Kw?(z—v} ( ,2Kwlixltm/2)
—f *L*&Lwdw—f 1—e =dw— H(vwz)f e (e "*1')*dw]dv

0 @ V14t t (u2‘/1+ )2 o VI Fof efoiinimsn
k) e [T
I

[ﬂ“% { . -1 -1 z—_’i -1
*_nﬂ‘ ngf {K(z{—u)smh lgy, — K(z—v)sinh~tu,4- K\I:c| [(csch 10y L’|CSCh u4)

ilxl~

uy o~ Kuey__ n—Koe, 4 —Koe, Kwl(z=v) { 2Kwllzl=-m 2] __
e [ A e H G [l D dobas

0 @2Vt et ws? V] L w? W V] eKellzi-m 21
. vy @ KT — o= KaTa .9 Ky y? g Koy v, e KT —K(z—n)a®—1
— = d.
+8K‘[f wt V1ot dw—l—fw @t V1 +w? @

eKa?(z-n) (eZKmlxI—m/2I — 1)

- . e prs*l,,,
—H(ﬂvz) fv‘ (1)4 A/1_11_0)2 eHellxi=mr 21 dw+9an _271+w dwj!}
with the notations;

w=(lal+ )/t w=(lel+g) sl w=|lel -Gl w=]lzl =)

o=zl +5)/Gtn  w=(l2l+ 5 ) le=nl  w=lel=TEHn  v=|lel =Tzl

vs=(lzl+7)/2 o= 1217l
81:!x1+%—~w(z+v) ez:|r1+%—w(zfu) er’le *’*w(z+u) e4:i|xl—%l—a)(z—u)
n=lzl+ G —otn =zl R nzilxl—?zzlvw(z%—n) n:‘\lxl—%J—w(zw)
75:|x|+—722—wz rsZ{lzlv?%If(uz

(3) the sharp full wedge
u(x,0, 2,20, 0, a) ZZUF%H(L 252, @)

2K = e 7T 1 cos(nr)) o’ .
=2Ur'y; { f f Vo L (g4 K2r2) [COS(TZ)‘VKTV Sm(TZ)J

2
[cos(ar) —%;sin (ar) ]cos[a (x—xo) dodr
1 /2 ) . ) o 2
__Kf e~ Kiztaysec oc(e—Knsec u_2+eKnsec "’)sm[K(:c—J:o)seca]cos a da
T
+ - K f —K (z+a) cos? a(e Kncos’e__ 2+el(ncos a)COS[K(.Z‘ Io)COSa’ sec%da} o

The double integral can be changed to the following form (with z instead of z—x¢);

REEMPREE H24% 5 15 19874 31

(A4)

(A5)
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w oo omy¥oifrt 1— 3 2 2
{J‘o fo e J”2+T[2 (U:j-sl({’;:z)] [cos (rz)—%sin(rz)][cos (ar)—%;sin(ar)]cos(ax) da dr}y=o

7 fn{ln (z+a—vt VZF (z+a—n?)(z—a+v+ YZit (z—atv)?
0

8K® (ztatvt V2t (ztat i) z—a—vt+ V2i+ (z—a—)?
i tatamy) | —eKollzi=u s fa=)) 121/ (ataty) eRov—p—Katv
A b e Kelxi-w(zta) s
f|x|/<z+a+»> w1+ o? do+2 fo wY1fo? emhett o dw}d) (A6)

As x—0, the value of this integral is
(a) when 0<z<a—n or z>a+n
kT 2G+a)n(z+a) —2lz—alln|z—al — (z+a+mlnz+atn) — (z+a—mIn(z+a—n
+z—al+mIn(lz—al+2)+(lz—al —n)In(lz—a}—n)]
(b) when a—n<e<a+n
’ng‘{[Z(z+a)ln(z+a)—2]z—al1nlzva|‘(z+a+n)ln(z+a+n)-(z—l—a*n)ln(z—i-a-—n)
+(a+n—z)ln(a+n—z)+(z~a+n)ln(z—a+n)+li$ 2(jz—al —n)(1+Ine))

As |z—al—n, € behaves the same as |z—al| —n.
A logarithmic singularity does exist, as expected, in this case.
(4) the sharp half wedge

u(z, 0, z; 2o, 0, 0) :ZUF%H(z, 2320, 0)

. 1{ K% ale=r Vo L
_ZUPZ{ 2 fo fo v——‘—_——-«/ﬁﬁ(04+K2rz)[cos (rz)— Kr sm(rz)}
[ l—c(;s;(nr) - ”T—;ég(”r)—]cos[a(x—xo)]du dr
— “}{ f”ze"‘““?"‘(e""'“c’“—i— Knsec?a—1)sin[ K(x—zy)secacos’a da
0
+ 1 f”ze"‘m’"“(e‘K“°°“’“+Kncos2a-1)cos[K(x~xo)c0sa]sec3a da} (A7)
K Jo y=0
The double integral can be changed to the following form (with x instead of x—z0);
il e PLr Al gt 1—cos(nr) _ mr—sin(nr)
{fo fo Yo?+ 12 (a*+K?r%) [COS (Tz)_vajsm(Tz)][ a° Kr ]cos(ax)do dT}J=0

= n u, e—-Kma,_e—Kme, o0 ,?Kmezte_Kﬂ‘f:Zﬁ B %3 e—ch,‘_e-Kwe‘
= 3K fo{fo o Vital d‘“‘f,. oV ifar dotsignz—( [ oVitar v

+J‘N exme._|_e-xmi_2 dw>}dv

w wvVite®
o { v, 3eKeTa—gKoTi— g KuTs g KaTuf- Do Kels — e KuTe —4Kpae KT
8K3 lJo B VIt
va e"K“’."+eK”TZ—e_K“’Tﬂ—e_K°’T¢ oo eKmT,+eKm7‘_2eKwT‘+e-—KmT,+E—Kw734_2e—KmT5
fu, P V1ta? do— f V1t do
vs 2*8““’71—6_’(‘”7‘+e—K"’75-e_K‘*‘TE’2Kﬂw28_x"’76 v, (eK“Ts+e_KW75) (l__e—l(a.7n)
PR SRR, 56 i S AN
+2 [ i otz o do) (AB)
with the notations;
uy=|z|/(z+v) wy=|z|/lz—v] vi=lz|/(z+n) vo=|x|/lz—n| vs=|z|/z
ey=lz|tolz+v) ey=|z|—wlz+v) a=|z|tolz—y| e=|x| —wlz—y|
n=lz|twlz+n) re=lz|—wlz+n) r=lzrltwolz—nl n=lz|—wlz—n|

rs=|z|+wz ro= | x| —wz
As |z|—0, the value of this double integral vanishes when z>#n and diverges asw‘,ﬁ? (n—2) an; Inw when

0<z<n. It is to be noted that a logarithmic singularity exists in this latter case.
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