• Title/Summary/Keyword: Wave Propagation Algorithm

Search Result 148, Processing Time 0.036 seconds

A HIGH-RESOLUTION NUMERICAL ANALYSIS OF SHOCK FOCUSING IN CONCAVE REFLECTORS (반사경 내부 유동의 초점 형성에 관한 고해상도 수치 해석)

  • Jung, Y.G.;Chang, K.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.170-175
    • /
    • 2009
  • Shock focusing is related with explosive release of shock wave energy on a narrow spot in a short duration of time triggering a spontaneous high pressure near the focal point. It is well known that reflection of planar incident shock wave from the metallic concave mirror such as ellipsoidal, paraboloidal or hemispherical cavities will focus on a focal point. We intend to improve the computational results using a wave propagation algorithm and to resolve the mushroom-like structure. For computation of the concave cavity flow, it is not easy to use a single-block mesh because of the many singular points in geometry and coordinates. We have employed a uniform Cartesian-grid method for the wave propagation algorithm.

  • PDF

Stress wave propagation in 1-D and 2-D media using Smooth Particle Hydrodynamics method

  • Liu, Z.S.;Swaddiwudhipong, S.;Koh, C.G.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.4
    • /
    • pp.455-472
    • /
    • 2002
  • The paper involves the study on the elastic and elasto-plastic stress wave propagation in the 1-D and 2-D solid media. The Smooth Particle Hydrodynamics equations governing the elastic and elasto-plastic large deformation dynamic response of solid structures are presented. The proposed additional stress points are introduced in the formulation to mitigate the tensile instability inherent in the SPH approach. Both incremental rate approach and leap-frog algorithm for time integration are introduced and the new solution algorithm is developed and implemented. Two examples on stress wave propagation in aluminium bar and 2-D elasto-plastic steel plate are included. Results from the proposed SPH approach are compared with available analytical values and finite element solutions. The comparison illustrates that the stress wave propagation problems can be effectively solved by the proposed SPH method. The study shows that the SPH simulation is a reliable and robust tool and can be used with confidence to treat transient dynamics such as linear and non-linear transient stress wave propagation problems.

NUMERICAL SIMULATION OF SHOCK FOCUSING PHENOMENON BY CARTESIAN EMBEDDED BOUNDARY METHOD AND WAVE PROPAGATION ALGORITHM (내장 카티지안 경계법과 파동전파 알고리즘을 사용한 충격파 집속 현상의 수치적 시뮬레이션)

  • Jung, Y.G.;Chang, K.S.
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.14-20
    • /
    • 2010
  • Shock-focusing concave reflectors can have parabolic, circular or elliptic cross-sections. They produce effectively a very high pressure at the focusing point. In the past, many optical images have been obtained on shock focusing via experiments. Measurement of field variables is, however, difficult in the experiment. Using the wave propagation algorithm and the Cartesian embedded boundary method, we have successfully obtained numerical Schlieren images that appear very much like the experimental results. In addition, we obtained the detailed field variables such as pressure, velocity, density and vorticity in the unsteady domain. The present numerical results have made it possible to understand the shock focusing phenomenon in more detail than before.

An analysis of elastic wave propagation in inhomogeneous solids using the Fourier method (Fourier 방법을 이용한 불균일 고체의 탄성파전달해석)

  • 김현실
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.327-330
    • /
    • 1998
  • Wave propagation in inhomogeneous elastic media is studied by using the Fourier method, where the spatial derivatives are computed by the FFT algorithm, while the time derivatives are expanded into the second order finite different expansion. For numerical examples, wave propagation in the layered half-plane are investigated. The comparisons of numerical and analytic results shows good agreement.

  • PDF

FDTD Analysis of Electromagnetic Wave Propagation in an Inhomogeneous Ionosphere under Arbitrary-Direction Geomagnetic Field

  • Kweon, Jun-Ho;Park, Min-Seok;Cho, Jeahoon;Jung, Kyung-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.3
    • /
    • pp.212-214
    • /
    • 2018
  • The finite-difference time-domain (FDTD) model was developed to analyze electromagnetic (EM) wave propagation in an inhomogeneous ionosphere. The EM analysis of ionosphere is complicated, owing to various propagation environments that are significantly influenced by plasma frequency, cyclotron frequency, and collision frequency. Based on the simple auxiliary differential equation (ADE) technique, we present an accurate FDTD algorithm suitable for the EM analysis of complex phenomena in the ionosphere under arbitrary-direction geomagnetic field. Numerical examples are used to validate our FDTD model in terms of the reflection coefficient of a single magnetized plasma slab. Based on the FDTD formulation developed here, we investigate EM wave propagation characteristics in the ionosphere using realistic ionospheric data for South Korea.

A non-destructive method for elliptical cracks identification in shafts based on wave propagation signals and genetic algorithms

  • Munoz-Abella, Belen;Rubio, Lourdes;Rubio, Patricia
    • Smart Structures and Systems
    • /
    • v.10 no.1
    • /
    • pp.47-65
    • /
    • 2012
  • The presence of crack-like defects in mechanical and structural elements produces failures during their service life that in some cases can be catastrophic. So, the early detection of the fatigue cracks is particularly important because they grow rapidly, with a propagation velocity that increases exponentially, and may lead to long out-of-service periods, heavy damages of machines and severe economic consequences. In this work, a non-destructive method for the detection and identification of elliptical cracks in shafts based on stress wave propagation is proposed. The propagation of a stress wave in a cracked shaft has been numerically analyzed and numerical results have been used to detect and identify the crack through the genetic algorithm optimization method. The results obtained in this work allow the development of an on-line method for damage detection and identification for cracked shaft-like components using an easy and portable dynamic testing device.

Wave propagation in a 3D fully nonlinear NWT based on MTF coupled with DZ method for the downstream boundary

  • Xu, G.;Hamouda, A.M.S.;Khoo, B.C.
    • Ocean Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.83-97
    • /
    • 2014
  • Wave propagation in a three-dimensional (3D) fully nonlinear numerical wave tank (NWT) is studied based on velocity potential theory. The governing Laplace equation with fully nonlinear boundary conditions on the moving free surface is solved using the indirect desingularized boundary integral equation method (DBIEM). The fourth-order predictor-corrector Adams-Bashforth-Moulton scheme (ABM4) and mixed Eulerian-Lagrangian (MEL) method are used for the time-stepping integration of the free surface boundary conditions. A smoothing algorithm, B-spline, is applied to eliminate the possible saw-tooth instabilities. The artificial wave speed employed in MTF (multi-transmitting formula) approach is investigated for fully nonlinear wave problem. The numerical results from incorporating the damping zone (DZ), MTF and MTF coupled DZ (MTF+DZ) methods as radiation condition are compared with analytical solution. An effective MTF+DZ method is finally adopted to simulate the 3D linear wave, second-order wave and irregular wave propagation. It is shown that the MTF+DZ method can be used for simulating fully nonlinear wave propagation very efficiently.

Analysis of Electromagnetic Wave Propagation from 2 Dimensional Random Rough Surfaces (2차원 불규칙 조면에서의 전자파 전파 해석)

  • Yoon, Kwang-Yeol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1114-1119
    • /
    • 2010
  • This paper is concerned with an numerical analysis of electromagnetic wave propagation from randomly rough surfaces as a desert, sea surface and so on. We propose discrete ray tracing method (DRTM) for analysis of characteristics of wave propagation along one dimensional (1D) and two dimensional (2D) random rough surfaces. The point of the present method is to discretize not only rough surface but also ray tracing. This technique helps saving computer memories and does simplifying ray searching algorithm resulting in saving computation time. Numerical calculations are carried out for 1D and 2D random rough surfaces and electric field distributions are shown to check the effectiveness of the proposed DRTM.

The Propagation Characteristics of the Pressure in the Volume Loaded Fluid Transmission Line (체적부하를 갖는 유체 전달관로의 압력전파 특성)

  • 윤선주;손병진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.3075-3083
    • /
    • 1994
  • The applications of the electrical transmission line theory to the pressure propagation characteristics in the volume loaded fluid transmission line with step and impulse input wave is demonstrated in this paper. The method is based on the premise that the time response is the inverse Fourier transform of frequency spectrum of the wave which spectrum is a product of frequency spectrum of input pressure wave and system transfer function. The frequency response and transient response of step and impulse input wave in the volume loaded fluid transmission line is analysed by the Laplace transform and inverse Laplace transform with FFT numerical algorithm. The numerical solution of the distributed friction model is compared with the average friction model and the infinite product model. And the result is showed that FFT method may have major advantages for the simulation of fluid circuitary.

Optimal Disposition of Direction Finder using EM Wave Propagation Analysis (전파환경분석을 통한 방향탐지기 최적배치에 관한 연구)

  • Yang, Jong-Won;Choi, Jun-Ho;Kwon, Do-Baeg;Kang, Hee-Seog;Park, Cheol-Sun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.170-179
    • /
    • 2007
  • This paper introduces the optimal disposition of direction finder using EM(Electro-magnetic) wave propagation analysis which is based on LR(Longley-Rice) propagation model and the characteristics of direction finder, emitter and terrain. Initial model is simulated and modified to minimize propagation error as a result of the field trials. Proposed analysis used line-of-sight analysis and mountain-top extraction algorithm to optimize the disposition in the assigned area and the result can be displayed in the 3D map in order of the percentage coverage for direction finding possibility area.