• Title/Summary/Keyword: Wave Parameters

Search Result 1,616, Processing Time 0.026 seconds

Effect of abrasive waterjet parameters on rock removal (연마재 워터젯 변수가 암석제거에 미치는 영향)

  • Oh, Tae-Min;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.421-435
    • /
    • 2012
  • Rock excavation (removal) tests are performed with effective parameters using an abrasive waterjet. For verification of the field rock excavation capabilities, the removal performance and level of efficiency are analyzed for hard granite rock in terms of the water pressure, exposure time of the jet, and the standoff distance. In particular, experimental tests are performed with a long standoff distance required condition in the real excavation field. The rock removal performance level changes according to the rock properties. In this study, various rock specimens are used and P-wave velocities are measured in order to determine the correlation between the removal performance and the P-wave velocity. As a result of the experimental study, the effect of waterjet parameters on rock removal is analyzed.

Parametric pitch instability investigation of Deep Draft Semi-submersible platform in irregular waves

  • Mao, Huan;Yang, Hezhen
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • Parametric pitch instability of a Deep Draft Semi-submersible platform (DDS) is investigated in irregular waves. Parametric pitch is a form of parametric instability, which occurs when parameters of a system vary with time and the variation satisfies a certain condition. In previous studies, analyzing of parametric instability is mainly limited to regular waves, whereas the realistic sea conditions are irregular waves. Besides, parametric instability also occurs in irregular waves in some experiments. This study predicts parametric pitch of a Deep Draft Semi-submersible platform in irregular waves. Heave motion of DDS is simulated by wave spectrum and response amplitude operator (RAO). Then Hill equation for DDS pitch motion in irregular waves is derived based on linear-wave theory. By using Bubnov-Galerkin approach to solve Hill equation, the corresponding stability chart is obtained. The differences between regular-waves stability chart and irregular-waves stability chart are compared. Then the sensitivity of wave parameters on DDS parametric pitch in irregular waves is discussed. Based on the discussion, some suggestions for the DDS design are proposed to avoid parametric pitch by choosing appropriate parameters. The results indicate that it's important and necessary to predict DDS parametric pitch in irregular waves during design process.

Comparison of Antenna Parameters of R-/S-Band Standard Gain Horn Antennas

  • Kang, Jin-Seob;Kim, Jeong-Hwan;Park, Jeong-Il
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.4
    • /
    • pp.224-231
    • /
    • 2015
  • A comparison of the antenna parameters for R-band (1.7-2.6 GHz) and S-band (2.6-3.95 GHz) standard gain horn antennas has been performed by the Korea Research Institute of Standards and Science (KRISS), together with seven domestic participants from private companies and public institutions. Its purpose, as a proficiency test program of the 'Antenna Measurement Club' of KRISS, was to check equivalences in antenna parameter measurements between KRISS and the participants, particularly in the R-/S-band, to support antenna manufacturers and end users in Korea. The measurement parameters of this comparison are the power gain, radiation pattern, and reflection coefficient of the traveling standards for R-/S-band pyramidal standard gain horn antennas. The comparison used a gain comparison method and an extrapolation method to measure the power gain of the two traveling standards; the radiation patterns were measured in the far-field region of the transmitting and receiving antennas.

Effect of geometrical parameters of reentry capsule over flowfield at high speed flow

  • Mehta, R.C.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.4
    • /
    • pp.487-501
    • /
    • 2017
  • The main purpose of the paper is to analyze effect of geometrical parameters of the reentry capsules such as radius of the spherical cap, shoulder radius, back shell inclination angle and overall length on the flow field characteristics. The numerical simulation with viscous flow past ARD (Atmospheric Reentry Demonstrator), Soyuz (Russian) and OREX (Orbital Reentry EXperimental) reentry capsules for freestream Mach numbers range of 2.0-5.0 is carried out by solving time-dependent, axisymmetric, compressible laminar Navier-Stokes equations. These reentry capsules appear as bell, head light and saucer in shape. The flow field features around the reentry capsules such as bow shock wave, sonic line, expansion fan and recirculating flow region are well captured by the present numerical simulations. A low pressure is observed immediately downstream of the base region of the capsule which can be attributed to fill-up in the growing space between the shock wave and the reentry module. The back shell angle and the radius of the shoulder over the capsule are having a significant effect on the wall pressure distribution. The effects of geometrical parameters of the reentry capsules will useful input for the calculation of ballistic coefficient of the reentry module.

Evaluation of Flaws in Adhesively Bonded Joint using Ultrasonic Signal Analysis (초음파 신호분석을 이용한 접착접합 이음의 결함평가)

  • Hwang, Yeong-Taik;Oh, Seung-Kyu;Han, Jun-Young;Jang, Chul-Sup;Yun, Song-Nam;Yi, Won;Kim, Hwan-Tae
    • Journal of Welding and Joining
    • /
    • v.22 no.2
    • /
    • pp.38-45
    • /
    • 2004
  • Ultrasonic signals transmitted through adhesively bonded plates were used to evaluate parameters related to attenuation and frequency in the adhesively bonded joint. The kinds of bonding materials with a different bonding thickness of constant pressure were used. And ultrasonic diagnosis was evaluated by p-wave sensor of 10MHz. FFT has been performed to determine bond-layer parameters such as effective thickness and frequency for adhesively bonded joint of A16061 plates in comparison with measured to theoretical ratios. When variable thickness exists, the ultrasonic spectrum was changed the frequency wave. The more materials thickness and the higher the frequency, the larger shift was observed. Measured ratios for cases of bond thickness and variety bonding materials are then used to determine bond parameters. The results show that the technique can be applied to the characterization of adhesively bonded joint.

Electromagnetic Electron-Cyclotron Wave for Ring Distribution with Alternating Current (AC) Electric Field in Saturn Magnetosphere

  • Haridas, Annex Edappattu;Kanwar, Shefali;Pandey, Rama Shankar
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.35-42
    • /
    • 2022
  • During their respective missions, the spacecraft Voyager and Cassini measured several Saturn magnetosphere parameters at different radial distances. As a result of information gathered throughout the journey, Voyager 1 discovered hot and cold electron distribution components, number density, and energy in the 6-18 Rs range. Observations made by Voyager of intensity fluctuations in the 20-30 keV range show electrons are situated in the resonance spectrum's high energy tail. Plasma waves in the magnetosphere can be used to locate Saturn's inner magnetosphere's plasma clusters, which are controlled by Saturn's spin. Electromagnetic electron cyclotron (EMEC) wave ring distribution function has been investigated. Kinetic and linear approaches have been used to study electromagnetic cyclotron (EMEC) wave propagation. EMEC waves' stability can be assessed by analyzing the dispersion relation's effect on the ring distribution function. The primary goal of this study is to determine the impact of the magnetosphere parameters which is observed by Cassini. The magnetosphere of Saturn has also been observed. When the plasma parameters are increased as the distribution index, the growth/damping rate increases until the magnetic field model affects the magnetic field at equator, as can be seen in the graphs. We discuss the outputs of our model in the context of measurements made in situ by the Cassini spacecraft.

Wave and Wave Board Motion of Hybrid Wave Maker (다기능 조파기의 조파 운동과 발생 파형)

  • Kim, Hyochul;Oh, Jungkeun;Lew, Jae-Moon;Rhee, Shin Hyung;kim, Jae Heon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.6
    • /
    • pp.339-347
    • /
    • 2021
  • Piston type wave makers or flap type wave makers are usually adopted as a wave maker which disturbing the fluid domain with sinusoidal motion. Recently hybrid wave maker which could be operated as not only piston type and/or flap type but also swing type wave maker have been devised by utilizing the link mechanism. The wave board of hybrid wave maker has been devised to be independently controlled by the horizontal actuators on upper and lower end of the wave board. The wave board could operate as a flap type wave board when the lower hinge is in a stationary condition and the upper hinge is operated with sinusoidal motion. On the contrary, the swing type wave board could be obtained by the lower hinge is activated and the upper hinge is in a stationary condition. When both end of the wave board is activated in a synchronized condition, the wave board motion become piston motion. In addition the hybrid wave maker could enhance the piston motion with flap motion or swing motion by selecting control parameters. Various wave board motion of hybrid wave maker and relevant wave form have measured on the wave board and departed location. It is appeared that the novel hybrid wave maker could be utilized for the improvement of wave qualities in experiments.

Numerical analysis of an offshore platform with large partial porous cylindrical members due to wave forces

  • Park, Min-Su;Kawano, Kenji;Nagata, Shuichi
    • Ocean Systems Engineering
    • /
    • v.1 no.4
    • /
    • pp.337-353
    • /
    • 2011
  • In the present study, an offshore platform having large partial porous cylindrical members, which are composed of permeable and impermeable cylinders, is suggested. In order to calculate the wave force on large partial porous cylindrical members, the fluid domain is divided into three regions: a single exterior region, N inner regions and N beneath regions, and the scattering wave in each fluid region is expressed by an Eigen-function expansion method. Applying Darcy's law to the porous boundary condition, the effect of porosity is simplified. Wave excitation forces and wave run up on the structures are presented for various wave conditions. For the idealized three-dimensional platform having large partial porous cylindrical members, the dynamic response evaluations of the platform due to wave forces are carried out through the modal analysis. In order to examine the effects of soil-structure interaction, the substructure method is also applied. The displacement and bending stress at the selective nodal points of the structure are computed using various input parameters, such as the shear-wave velocity of soil, the wave height and the wave period. Applying the Monte Carlo Simulation (MCS) method, the reliability evaluations at critical structure members, which contained uncertainties caused by dynamic forces and structural properties, are examined by the reliability index with the results obtained from MCS.

Evolution of Surface Profiles of Breaking Waves Generated by Directional Wave Focusing (다방향 파랑집중에 의한 쇄파의 파형특성 연구)

  • Hong Keyyong;Choi Hak-Sun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.1
    • /
    • pp.11-18
    • /
    • 2002
  • Directional breaking waves are generated by the component wave focusing both in direction and frequency based on constant wave steepness and constant wave amplitude spectrum models. The generated breaking waves are classified in the incipient, single and multi breaking waves. The characteristics of directional breaking waves are investigated in terms of surface profile parameters of wave crest steepness and asymmetry. The evolution of breaking wave characteristics is analyzed in a view of focusing efficiency. It shows that the front steepness and vertical asymmetry play an important role in breaking process, while the crest rear steepness and horizontal asymmetry are nearly constant during the process. The superposition of directional components greatly enhances the focusing efficiency and it suggests that characteristics of directional breaking waves may significantly different from uni-directional ones.

  • PDF

Probability Distribution of Nonlinear Random Wave Heights Using Maximum Entropy Method (최대 엔트로피 방법을 이용한 비선형 불규칙 파고의 확률분포함수)

  • 안경모
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.4
    • /
    • pp.204-210
    • /
    • 1998
  • This paper presents the development of the probability density function applicable for wave heights (peak-to-trough excursions) in finite water depth including shallow water depth. The probability distribution applicable to wave heights of a non-Gaussian random process is derived based on the concept of the maximum entropy method. When wave heights are limited by breaking wave heights (or water depth) and only first and second moments of wave heights are given, the probability density function developed is closed form and expressed in terms of wave parameters such as $H_m$(mean wave height), $H_{rms}$(root-mean-square wave height), $H_b$(breaking wave height). When higher than third moment of wave heights are given, it is necessary to solve the system of nonlinear integral equations numerically using Newton-Raphson method to obtain the parameters of probability density function which is maximizing the entropy function. The probability density function thusly derived agrees very well with the histogram of wave heights in finite water depth obtained during storm. The probability density function of wave heights developed using maximum entropy method appears to be useful in estimating extreme values and statistical properties of wave heights for the design of coastal structures.

  • PDF