• 제목/요약/키워드: Wave Impact Force

검색결과 62건 처리시간 0.029초

Computational impact responses of reinforced concrete slabs

  • Mokhatar, S.N.;Abdullah, R.;Kueh, A.B.H.
    • Computers and Concrete
    • /
    • 제12권1호
    • /
    • pp.37-51
    • /
    • 2013
  • The responses of reinforced concrete slabs subject to an impact loading near the ultimate load range are explored. The analysis is carried out on a simply supported rectangular reinforced concrete slab using a nonlinear explicit dynamic procedure and considering three material models: Drucker-Prager, modified Drucker-Prager, and concrete damaged plasticity, available in the commercial finite element software, ABAQUS/Explicit. For comparison purposes, the impact force-time response, steel reinforcement failure, and concrete perforation pattern are verified against the existing experimental results. Also, the effectiveness of mesh density and damage wave propagation are studied independently. It is shown that the presently adopted finite element procedure is able to simulate and predict fairly accurate the behavior of reinforced concrete slab under impact load. More detailed investigations are however demanded for the justification of effects coming from an imperfect projectile orientation as well as the load and structural surface conditions, including the impulsive contacted state, which are inevitable in an actual impact environment.

유한 요소법에 의한 적층 복합 보의 충격 해석 (Impact analysis of a liminated composite beam by the finite element method)

  • 안국찬;김문생;김규남
    • 대한기계학회논문집
    • /
    • 제12권4호
    • /
    • pp.652-661
    • /
    • 1988
  • 본 연구에서는 이질, 이방성 적층 복합보(beam)의 이론적 충격 응답을 해석하 기 위하여 Sun의 고차 보 유한 요소 이론을 복합 재료 이론과 식(1)~식(3)의 접촉 법 칙을 고려하여 수정하였고, 이 중 충격 접촉력에 관하여는 각각 [90˚/45˚/90˚/-45˚ /90˚]$_{2S}$와[0˚/45˚/0˚/-45˚/0˚]$_{2S}$의 두 적층 형태를 가지는 흑연/에폭 시와 유리/에폭시 복합 재료에 대한 강구(steel ball)에 의한 충격해석을 하여, Yang 의 식에 의한 최대 접촉력과 비교 검토하였고, 다음 변형율 파형을 파동 전파(wave propagation)이론에 의해 비교 검토하므로써 이 수정된 이론의 타당성을 입증하였다.하였다.

사각기둥의 전면 부가구조물 설치로 인한 입사붕괴파의 충격력 완화 효과 (Mitigation Effects of Incident Bore Impact Loads Acting on a Tall Structure by Installation of Obstacles)

  • 이병혁;황성철;박종천
    • 한국해양공학회지
    • /
    • 제27권1호
    • /
    • pp.93-101
    • /
    • 2013
  • The incident bore impact loads acting on a tall structure is simulated using the refined Moving Particle Simulation (MPS) method. The particle method is more feasible and effective than conventional grid-based methods for the violent free-surface problems. In the present study, the simulation results for the temporal change of the hydrodynamic force on the structure and longitudinal velocity component around the structure are compared with the experiments (Radd and Bidoae, 2005). And the mitigation effects by installation of various obstacles in front of the main structure are investigated and discussed form the simulation results.

Percussive Drilling Application of a Tubular Reciprocating Translational Motion Permanent Magnet Synchronous Motor

  • Zhang, Shujun;Norum, Lars E.;Nilssen, Robert;Lorenz, Robert D.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권4호
    • /
    • pp.419-424
    • /
    • 2012
  • This paper presents a tubular reciprocating translational motion permanent magnet synchronous motor for percussive drilling applications for offshore oil & gas industry. The motor model and rock model are built up by doing force analysis of the motor and analyzing the physical procesof impact. The optimization of input voltage waveforms to maximize the rate of penetration is done by simulations. The simulation results show that the motor can be utilized in percussive drilling applications and achieve a very large impact force. Simulation results for optimization also show that second harmonic input voltage produces a higher rate of penetration than the sine wave and fourth harmonic input voltages.

Photothermoelastic interactions under Moore-Gibson-Thompson thermoelasticity

  • Kumar, Rajneesh;Sharma, Nidhi;Chopra, Supriya
    • Coupled systems mechanics
    • /
    • 제11권5호
    • /
    • pp.459-483
    • /
    • 2022
  • In the present work, a new photothermoelastic model based on Moore-Gibson-Thompson theory has been constructed. The governing equationsfor orthotropic photothermoelastic plate are simplified for two-dimension model. Laplace and Fourier transforms are employed after converting the system of equations into dimensionless form. The problem is examined due to various specified sources. Moving normal force, ramp type thermal source and carrier density periodic loading are taken to explore the application of the assumed model. Various field quantities like displacements, stresses, temperature distribution and carrier density distribution are obtained in the transformed domain. The problem is validated by numerical computation for a given material and numerical obtained results are depicted in form of graphs to show the impact of varioustheories of thermoelasticity along with impact of moving velocity, ramp type and periodic loading parameters. Some special cases are also explored. The results obtained in this paper can be used to design various semiconductor elements during the coupled thermal, plasma and elastic wave and otherfieldsin thematerialscience, physical engineering.

동해안 항만 및 어항 개발사업에 따른 해양물리학적 영향평가 개선방안 (Improvement for Impact Assessment of Marine Physical on the Development of Ports and Fishing Harbors in the East Coast)

  • 김인철;김귀영;전경암;엄기혁;유준;이대인;김영태;김희정
    • 해양환경안전학회지
    • /
    • 제19권2호
    • /
    • pp.111-118
    • /
    • 2013
  • 동해안 항만 및 어항 개발 사업에 따른 해양환경영향평가 개선방안을 제시하기 위해 2009년부터 2011년까지 3년간 동해안의 항만 및 어항 개발 사업에 따른 일반해역이용협의서 33건을 분석하였다. 분석결과 동해안에서 중점적으로 검토해야 하는 해류, 파랑, 수심측량 자료의 경우 각각 3건, 12건, 16건 만이 조사가 이루어졌다. 하지만 동해안에서 시행되는 항만 및 어항 개발사업의 경우 서해, 남해와는 다른 동해안의 해역특성이 고려된 해양환경영향평가가 이루어져야 한다. 동해안은 조석의 영향이 약하고 해류, 취송류, 파랑의 영향이 우세한 해역으로 동해안의 해수유동을 파악하기 위해서는 해류의 영향을 고려해야하고 항내 정온도 및 방파제 기능성 및 안정성 등 협의대상사업의 타당성을 확보하기 위해서는 파랑을 평가항목으로 고려할 필요가 있다. 또한 동해안에 발생되는 항내매몰 및 해안침식의 문제점을 비교적 정확히 예측 및 예방하기 위해서는 해빈류를 표사이동의 기본외력으로 설정해야 하고 인근 하천에서의 토사유입과 해당 해역의 정확한 수심자료를 수치모델링의 검증자료로 활용해야 한다.

부유식 해양구조물을 위한 돌핀 계류시스템의 설계 연구 (A Study on the Design of Dolphin System for VLFS)

  • 조규남
    • 한국전산구조공학회논문집
    • /
    • 제19권1호
    • /
    • pp.105-111
    • /
    • 2006
  • 돌핀계류시스템은 부유식 해양구조물의 계류장치로서 강도 및 유용도 관점에서 바람직한 대안이 될 수 있다. 돌핀계류시스템 설계과정에서 정확한 파력산정과 필요한 지지파일의 개수선정은 주요 설계요인이 된다 본 논문에서는 파의 충격하중을 포함한 외력에 대한 구조해석을 통하여 적정한 돌핀시스템의 설계과정과 형식을 제시하였다. 부유식 해양구조물을 위한 돌핀계류시스템의 경우 다수의 지지파일시스템보다 단주의 지지파일시스템이 설계관점에서, 제한적이기는 하나, 유용성이 높다는 점을 알 수 있었다.

Analytical fragility curves of a structure subject to tsunami waves using smooth particle hydrodynamics

  • Sihombing, Fritz;Torbol, Marco
    • Smart Structures and Systems
    • /
    • 제18권6호
    • /
    • pp.1145-1167
    • /
    • 2016
  • This study presents a new method to computes analytical fragility curves of a structure subject to tsunami waves. The method uses dynamic analysis at each stage of the computation. First, the smooth particle hydrodynamics (SPH) model simulates the propagation of the tsunami waves from shallow water to their impact on the target structure. The advantage of SPH over mesh based methods is its capability to model wave surface interaction when large deformations are involved, such as the impact of water on a structure. Although SPH is computationally more expensive than mesh based method, nowadays the advent of parallel computing on general purpose graphic processing unit overcome this limitation. Then, the impact force is applied to a finite element model of the structure and its dynamic non-linear response is computed. When a data-set of tsunami waves is used analytical fragility curves can be computed. This study proves it is possible to obtain the response of a structure to a tsunami wave using state of the art dynamic models in every stage of the computation at an affordable cost.

외연적 시간적분법을 이용한 복합재료 섬유 파단 시 음향방출의 3차원 유한요소 해석 (Tree-dimensional FE Analysis of Acoustic Emission of Fiber Breakage using Explicit Time Integration Method)

  • 백승훈;박시형;김승조
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.172-175
    • /
    • 2005
  • The numerical simulation is performed for the acoustic emission and the wave propagation due to fiber breakage in single fiber composite plates by the finite element transient analysis. The acoustic emission and the following wave motions from a fiber breakage under a static loading is simulated to investigate the applicability of the explicit finite element method and the equivalent volume force model as a simulation tool of wave propagation and a modeling technique of an acoustic emission. For such a simple case of the damage event under static loading, various parameters affecting the wave motion are investigated for reliable simulations of the impact damage event. The high velocity and the small wave length of the acoustic emission require a refined analysis with dense distribution of the finite element and a small time step. In order to fulfill the requirement for capturing the exact wave propagation and to cover the 3-D simulation, we utilize the parallel FE transient analysis code and the parallel computing technology.

  • PDF

Vibration characteristics of caisson breakwater for various waves, sea levels, and foundations

  • Lee, So-Young;Huynh, Thanh-Canh;Dang, Ngoc-Loi;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • 제24권4호
    • /
    • pp.525-539
    • /
    • 2019
  • In this study, vibration characteristics of a gravity-based caisson-foundation breakwater system are investigated for ambient and geometric parameters such as various waves, sea levels, and foundation conditions. To achieve the objective, following approaches are implemented. Firstly, operational modal analysis methods are selected to identify vibration modes from output-only dynamic responses. Secondly, a finite element model of an existing caisson-foundation breakwater system is established by using a structural analysis program, ANSYS. Thirdly, forced vibration analyses are performed on the caisson-foundation system for two types of external forces such as controlled impacts and wave-induced dynamic pressures. For the ideal impact, the wave force is converted to a triangular impulse function. For the wave flow, the wave pressure acting on the system is obtained from wave field analysis. Fourthly, vibration modes of the caisson-foundation system are identified from the forced vibration responses by combined use of the operational modal analysis methods. Finally, vibration characteristics of the caisson-foundation system are investigated under various waves, sea levels, and foundations. Relative effects of foundation conditions on vibration characteristics are distinguished from that induced by waves and sea levels.