Browse > Article
http://dx.doi.org/10.12989/csm.2022.11.5.459

Photothermoelastic interactions under Moore-Gibson-Thompson thermoelasticity  

Kumar, Rajneesh (Department of Mathematics, Kurukshetra University)
Sharma, Nidhi (Department of Mathematics, Maharishi Markandeshwar University)
Chopra, Supriya (Department of Mathematics, Government College for Women)
Publication Information
Coupled systems mechanics / v.11, no.5, 2022 , pp. 459-483 More about this Journal
Abstract
In the present work, a new photothermoelastic model based on Moore-Gibson-Thompson theory has been constructed. The governing equationsfor orthotropic photothermoelastic plate are simplified for two-dimension model. Laplace and Fourier transforms are employed after converting the system of equations into dimensionless form. The problem is examined due to various specified sources. Moving normal force, ramp type thermal source and carrier density periodic loading are taken to explore the application of the assumed model. Various field quantities like displacements, stresses, temperature distribution and carrier density distribution are obtained in the transformed domain. The problem is validated by numerical computation for a given material and numerical obtained results are depicted in form of graphs to show the impact of varioustheories of thermoelasticity along with impact of moving velocity, ramp type and periodic loading parameters. Some special cases are also explored. The results obtained in this paper can be used to design various semiconductor elements during the coupled thermal, plasma and elastic wave and otherfieldsin thematerialscience, physical engineering.
Keywords
carrier density loading; Fourier transform; Laplace transform; Moore-Gibson-Thompson thermoelastic model; moving normal force; photothermoelastic orthotropic; ramp type thermal source;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Marin, M., Ochsner, A. and Bhatti, M.M. (2020), "Some results in Moore-Gibson-Thompson thermoelasticity of dipolar bodies", ZAMM-J. Appl. Math. Mech., 100(2), e202000090. https://doi.org/10.1002/zamm.202000090.   DOI
2 Marin, M., Othman, M. and Abbas, I.A. (2015), "An extension of the domain of influence theorem for generalized thermoelasticity of anisotropic material with voids", J. Comput. Theor. Nanosci., 12(8), 1594-1598. https://doi.org/10.1166/jctn.2015.3934.   DOI
3 Kumar, R., Sharma, N. and Chopra, S. (2022), "Modelling of thermomechanical response in anisotropic photothermoelastic plate", Int. J. Mech. Eng., 7(6), 577-594.
4 Lotfy, Kh. (2019), "Effect of variable thermal conductivity during the photothermal diffusion process of semiconductor medium", Silicon, 11(4), 1863-1873. https://doi.org/10.1007/s12633-018-0005-z.   DOI
5 Lotfy, Kh. and Othman, M. (2011), "Effect of rotation on plane waves in generalized thermo-microstretch elastic solid with one relaxation time", Multidisc. Model. Mater. Struct., 7(1), 43- 62. https://doi.org/10.1108/15736101111141430.   DOI
6 Lotfy, Kh., Hassan, W., El-Bary, A.A. and Kadry, M.A. (2020), "Response of electromagnetic and Thomson effect of semiconductor medium due to laser pulses and thermal memories during photothermal excitation", Result. Phys., 16, 102877. https://doi.org/10.1016/j.rinp.2019.102877.   DOI
7 Mahdy, A.M.S., Lotfy, Kh., Ahmed, M.H., El-Bary, A.A. and Ismail, E.A. (2020), "Electromagnetic hall current effect and fractional heat order for microtemperature photo-excited semiconductor medium with laser pulses", Result. Phys., 17, 103161. https://doi.org/10.1016/j.rinp.2020.103161.   DOI
8 Mandelis, A. (1987), Photoacoustic and Thermal wave Phenomena in Semiconductors, Elsevier Science, North-Holland, New York.
9 Mandelis, A. and Michaelian, K.H. (1997), "Photoacoustic and photothermal science and engineering" Opt. Eng., 36(2), 301-302. https://doi.org/10.1117/1.601597.   DOI
10 Abbas, I.A. (2014b), "Fractional order GN model on thermoelastic interaction in an infinite fibre- reinforced anisotropic plate containing a circular hole", J. Comput. Theor. Nanosci., 11(2), 380-384. https://doi.org/10.1166/jctn.2014.3363.   DOI
11 Abbas, I.A. (2015), "Eigenvalue approach on fractional order theory of thermoelastic diffusion problem for an infinite elastic medium with a spherical cavity", Appl. Math. Model., 39(20), 6196-6206. https://doi.org/10.1016/j.apm.2015.01.065.   DOI
12 Aboelregal, A.E., Ahmed, I.E., Nasr, M.E., Khalil, M., Zakria, A., and Mohammed, F.A. (2020), "Thermoelastic processes by a continuous heat source line in an infinite solid via Moore-Gibson-Thompson thermoelasticity", Mater. (Basel), 13(19), 4463. https://doi.org/10.3390/ma13194463.   DOI
13 Abouelregal, A., Elagan S.K. and Alshehri, N. (2021), "Modified Moore-Gibson-Thompson photo thermoelastic model for a rotating semiconductor half-space subjected to a magnetic field", Int. J. Modern Phys., 32(12), 2150163. https://doi.org/10.1142/s0129183121501631.   DOI
14 Almond, D.P. and Patel, P.M. (1996), Photothermal Science and Techniques, Chapman and Hall, London.
15 Bazarra, N., Fernandez, J.R. and Quintanilla, R. (2020), "Analysis of a Moore-Gibson-Thompson thermoelastic problem", J. Comput. Appl. Math., 382, 113058. https://doi.org/10.1016/j.cam.2020.113058.   DOI
16 Biot, M.A. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl Phys., 27(3), 240-253. https://doi.org/10.1063/1.1722351.   DOI
17 Jangid, K., Gupta, M. and Mukhopadhyay, S. (2021), "On propagation of harmonic plane waves under the Moore-Gibson-Thompson thermoelasticity theory", Wave. Random Complex Media, 1-24. https://doi.org/10.1080/17455030.2021.1949071.   DOI
18 Conti, M., Pata, V. and Quintanilla, R. (2020a), "Thermoelasticity of Moore-Gibson-Thompson type with history dependence in the temperature", Asymp. Anal., 120, 1-21. https://doi.org/10.3233/ASY-191576.   DOI
19 Green, A.E. and Naghdi, P.M. (1991), "A re-examination of the basic postulates of thermomechanics", Proc. Roy. Soc. London A, 432, 171-194. https://doi.org/10.1098/rspa.1991.0012.   DOI
20 Hobiny, A. and Abbas, I.A. (2018), "Theoretical analysis of thermal damages in skin tissue induced by intense moving heat source", Int. J. Heat Mass Transf., 124, 1011-1014. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.018.   DOI
21 Mohamed, M.S., Lotfy, Kh., El-Bary, A. and Mahdy, A.M.S. (2022), "Photo-thermal-elastic waves of excitation microstretch semiconductor medium under the impact of rotation and initial stress", Opt. Quant. Electron., 54(4), 1-21. https://doi.org/10.1007/s11082-022-03533-x.   DOI
22 Nikolic, P.M. and Todorovic, D.M. (1989), "Photoacoustic and electroacoustic properties of semiconductors", Prog. Quant. Electron., 13, 107-189.   DOI
23 Othman, M., Lotfy, Kh. and Farouk, R. (2009), "Transient disturbance in a half-space under generalized magneto-thermoelasticity with internal heat source", Acta Physica Polonica A, 116(2), 185-192.   DOI
24 Hobiny, A., Alzahrani, S. and Abbas, A. (2021), "A study on photo-thermo-elastic wave in a semi-conductor material caused by ramp-type heating", Alex. Eng. J., 60(2), 2033-2040. https://doi.org/10.1016/j.aej.2020.12.002.   DOI
25 Jahangir, A., Tanvir, F. and Zenkour, A.M. (2020), "Reflection of photothermoelastic waves in a semiconductor material with different relaxations", Ind. J. Phys., 95, 51-59. https://doi.org/10.1007/s12648-020-01690-x.   DOI
26 Khamis, A.K., El-Bary, A.A., Lotfy, Kh. and Bakali, A. (2020), "Photothermal excitation processes with refined multi dual phase-lags theory for semiconductor elastic medium", Alex. Eng. J., 59(1), 1-9. https://doi.org/10.1016/j.aej.2019.11.016.   DOI
27 Kumar, H. and Mukhopadhyay, S. (2020), "Thermoelastic damping analysis in microbeam resonators based on Moore-Gibson-Thompson generalized thermoelasticity theory", Acta Mech., 231, 3003-3015. https://doi.org/10.1007/s00707-020-02688-6.   DOI
28 Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.   DOI
29 Quintanilla, R. (2019), "Moore-Gibson-Thompson thermoelasticity", Math. Mech. Solid., 24(12), 4020-4031. https://doi.org/10.1177/ 1081286519862007.   DOI
30 Quintanilla, R. (2020), "Moore-Gibson-Thompson thermoelasticity with two temperatures", Appl. Eng. Sci., 1, 100006. https://doi.org/10.1016/j.apples.2020.100006.   DOI
31 Roychoudhari, S.K. (2007), "On a thermoelastic three-phase-lag model", J. Therm. Stress., 30, 231-238. https://doi.org/10.1080/01495730601130919.   DOI
32 Green, A.E. and Naghdi, P.M. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stress., 15, 253-264. https://doi.org/10.1080/01495739208946136.   DOI
33 Abbas, I.A. (2011), "A two-dimensional problem for a fibre-reinforced anisotropic thermoelastic half-space with energy dissipation", Sadhana, 36(3), 411-423. https://doi.org/10.1007/s12046-011-0025-5.   DOI
34 Abbas, I.A. (2014a), "Analytical solution for a free vibration of a thermoelastic hollow sphere", Mech. Bas. Des. Struct. Mach., 43(3), 265-276. https://doi.org/10.1080/15397734.2014.956244.   DOI
35 Abo-Dahab, S. and Lotfy, Kh. (2015), "Generalized magneto-thermoelasticity with fractional derivative heat transfer for a rotation of a fibre-reinforced thermoelastic", J. Comput. Theor. Nanosci., 12(8), 1869-1881. https://doi.org/10.1166/jctn.2015.3972.   DOI
36 Abouelregal, A., Ersoy, H. and Civalek, O. (2021), "Solution of Moore-Gibson-Thompson equation of an unbounded medium with a cylindrical hole", Math., 9(13), 1536. https://doi.org/10.3390/math9131536.   DOI
37 Conti, M., Pata, V. and Quintanilla, R. (2020b), "On the analyticity of the MGT- viscoelastic plate with heat conduction", J. Diff. Equ., 269(10), 7862-7880. https://doi.org/10.1016/j.jde.2020.05.043.   DOI
38 Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elast., .31, 189-208. https://doi.org/10.1007/BF00044969.   DOI
39 Dhaliwal, R.S. and Singh, A. (1983), "Dynamic coupled thermoelasticity", SIAM Rev., 25(1), 126-127.   DOI
40 Saeed, A.M., Lotfy, Kh., El-Bary, A. and Ahmed, M.H. (2022), "Functionally graded (FG) magneto-photo-thermoelastic semiconductor material with hyperbolic two-temperature theory", J. Appl. Phys., 131(4), 045101. https://doi.org/10.1063/5.0072237.   DOI
41 Sharma, K. (2010), "Boundary value problems in generalised thermodiffusive elastic medium", J. Solid. Mech., 2(4), 348-362.
42 Sharma, N. and Kumar, R. (2021), "Photo-thermoelastic investigation of semiconductor material due to distributed loads", J. Solid Mech., 13(2), 202-212. https://doi.org/10.22034/JSM.2020.1907462.1639.   DOI
43 Sharma, N. and Kumar, R. (2022), "Photothermoelastic deformation in dual phase lag model due to concentrated inclined load", Itali. J. Pure Appl. Math..
44 Sharma, S., Sharma, K. and Bhargava, R.R. (2013), "Propagation of waves in micropolar thermoelastic solid with two temperatures bounded with layers or half-space of inviscid liquid", Mater. Phys. Mech., 16, 66-81.
45 Singh, B. and Mukhopadhyay, S. (2021), "Galerkin-type solution for the Moore-Gibson-Thompson thermoelasticity theory", Acta Mechanica, 232, 1273-1283. https://doi.org/10.1007/s00707-020-02915-0.   DOI
46 Thompson, P.A. (1972), Compressible-Fluid Dynamics, New York: McGraw-Hill.
47 Tzou, D.Y. (1995), "A unified approach for heat conduction from macro-to-micro-scales", J. Heat Transf., 117(1), 8-16. https://doi.org/10.1115/1.2822329.   DOI
48 Zakaria, K., Sirwah, M.A. and Abouelregal, A.E. (2021), "Photo-thermoelastic model with time- fractional of higher order and phase lags for a semiconductor rotating materials", Silicon, 13, 573-585. https://doi.org/10.1007/s12633-020-00451-z.   DOI
49 Zenkour, A.M. (2020), "Exact coupled solution for photothermal semiconducting beams using a refined multi-phase-lag theory", Opt. Laser Technol., 128, 106233. https://doi.org/10.1016/j.optlastec.2020.106233.   DOI