• Title/Summary/Keyword: Wave Factor

Search Result 980, Processing Time 0.03 seconds

DYNAMICS OF OPEN II-RAYS (META PHYSICS) AND CLOSED II-RAYS

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.39-46
    • /
    • 2000
  • The imploded open $\pi$-rays comprise of the space and their diameters are distributed from nearly zero to infinite. The change of the potential energy in the open $\pi$-ray produces an attraction force between them and it is sensible to the geometric shape factor and its frequency. The equivalent principle of general relativity means that in the wave equation its velocity of the force wave is infinite. The change of the state in a open $\pi$-ray(or any force wave) can be transferred to any sensible open $\pi$-ray via space at a finite velocity. Many properties of the light wave can be deduce from the motions of open $\pi$-rays.The nonsteady and steady Schr dinger equations include the dynamics of open $\pi$-rays and closed $\pi$-rays.$\prod$-ray is a tool of entity for constructing physics and metaphysics at the same time.

  • PDF

Evaluation of Concrete Strength Using Compression Wave Velocity (압축파 속도를 이용한 콘크리트의 강도 평가)

  • 이회근;이광명;김동수;김지상
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.697-702
    • /
    • 1999
  • Among several non-destructive testing methods, ultrasonic pulse velocity method has been widely used for the evaluation of concrete strength. However, this method might not provide accurate estimated results since factors influencing the relationship between strength and wave velocity is not considered. In this study, the evaluation methods of concrete strength using compression wave velocities measured by either ultrasonic pulse velocity method or impact-resonance method are proposed. A basic equation is obtained by the linear regression with velocity vs. strength data at a specific age and then, ageing factor is employed in the equation to consider the difference of the increasing rate between wave velocity and strength. Strengths predicted by the proposed equation agree well with test results.

  • PDF

Evaluation of methods for estimating the pulse reflection site with cardiovascular simulator (심혈관계 시뮬레이터를 이용한 맥파 반사지점 추정방법들의 비교)

  • Lee, Ju-Yeon;Shin, Sang-Hoon
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.19 no.1
    • /
    • pp.47-54
    • /
    • 2015
  • Objective Wave reflection is an important factor that determines the shape of the pulse wave. The purpose of this study is to compare the conventional method used for estimating the reflection site of pulse with a cardiovascular simulator. Methods: In this study, cardiovascular simulator with one elastic tube was used. The pressure and flow was measured simultaneously at three different points. The measured data were used to the conventional methods to estimate the pulse wave reflection site. The results were compared with the known length which were the distances from the measured points to the end of tube. Results & Conclusions: There is a significant error with the time domain method. While, the reflection site with the frequency domain method was similar to the actual reflection site.

Temperature Measurement of Silicon Wafers Using Phase Estimation of Acoustic Wave (음향파의 위상 추정을 이용한 실리콘 웨이퍼의 온도 측정)

  • Joonhyuk Kang;Lee, Seokwon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.11
    • /
    • pp.493-495
    • /
    • 2003
  • Accurate temperature measurement is a key factor to implement the rapid thermal processing(RTP). A temperature estimation method using acoustic wave has been proposed to overcome the inaccuracy and contamination problem of the previous methods. The proposed method, however, may suffer from the offset and low resolution problem since it is implemented in the time domain. This paper presents a temperature estimation method using the phase detection of acoustic wave. Based on the frequency domain approach, the proposed technique increases the resolution of the measured temperature and reduces the effect of noise. We investigate the performance of the proposed method via experiments.

Simplified formulas of heave added mass coefficients at high frequency for various two-dimensional bodies in a finite water depth

  • Koo, Weoncheol;Kim, Jun-Dong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.115-127
    • /
    • 2015
  • The aim of this study is to develop a simplified formula for added mass coefficients of a two-dimensional floating body moving vertically in a finite water depth. Floating bodies with various sectional areas may represent simplified structure sections transformed by Lewis form, and can be used for floating body motion analysis using strip theory or another relevant method. Since the added mass of a floating body varies with wave frequency and water depth, a correction factor is developed to take these effects into account. Using a developed two-dimensional numerical wave tank technique, the reference added masses are calculated for various water depths at high frequency, and used them as basis values to formulate the correction factors. To verify the effectiveness of the developed formulas, the predicted heave added mass coefficients for various wetted body sections and wave frequencies are compared with numerical results from the Numerical Wave Tank (NWT) technique.

Design of the Electronic Anti-Fouling System for a Wave Energy Converter

  • Lee, Ji-Young;Oh, Jin-Seok
    • Journal of Navigation and Port Research
    • /
    • v.33 no.7
    • /
    • pp.501-504
    • /
    • 2009
  • There are many difficulties to supply constant power to marine facilities which operate in the sea. Especially, there is a limit to stand alone power supply systems due to the influence of weather conditions. That's why a hybrid power supply system is required to overcome these problems. This paper will describe an Electronic Anti-Fouling System (EAFS) to maximise the power efficiency for a solar - wave hybrid power generation system. A main factor reducing the efficiency of a Wave Energy Converter (WEC) is due to the attachment of aquatic life forms. Therefore the aim of this research is to develop a simulation programme to enable the design of more efficient EAFS for hybrid power generation systems and to provide valuable data for production of more efficient EAFS.

The estimation of 3D image using E.O.G (안전위도(EOG)에 의한 입체영상의 평가)

  • Cho, Am
    • Proceedings of the ESK Conference
    • /
    • 1996.04a
    • /
    • pp.168-185
    • /
    • 1996
  • In this research, an investigation of the eye movement was performed when the objects perceived by the eye are three-dimensional objects, two dimensional images, and three dimensional image. This investigation was done by observing the EOG(Electro-oculogram) waves which were achived from experiments. The observed waves were categorized into several groups. Differences among the waves were analyzed for each object and image perceived by the eye. In order to obtain waves to be analyzed, two kinds of experiments were performed. In each experiments, the saccadic eye movement and the smooth pusuit eye movement was considered as an independent variable individually. Waves obtained from the experiments were categorized into 4 types(Wave1, Wave2, Wave3, Wave4) depending on their characteristics. Unlike from the other images, three dimensional image was revealed as a key factor for the active movement of the eye. Futhermore, a unique eye movement was observed in the case of three dimensional image where the focus of the eye was achived in three steps.

  • PDF

The estimation of 3D image using EOG (안전위도(EOG)에 의한 입체영상의 평가)

  • Cho, Am
    • Journal of the Ergonomics Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.1-13
    • /
    • 1997
  • In this research, and investigation of the eye movement was performend when the objects perceived by the eye are three-dimensional objects, two dimensional images, and trhee dimensional images. This investigation was done by observing the EQG(Electro- oculogram) waves which were obtained from experiments. The observed waves were categorized into several groups. Differences among the waves were analyzed for each object and image perceived by the eye. In order to obtain waves for analysis, two kinds of experiments were performen. In each experiment, the saccadic eye movement and the smooth pursuit eye movement were considered as an independent variables. Waves obtained from the experiments were categorized into 4 types (Wave-1, Wave-2, Wave-3, Wave-4) depending on their characteristics. Unlike the other images, three dimensional image was revealed as a key factor for the active movement of the eye. Futhermore, a unique eye movement was observed in the case of three dimensional images where the focus of the eye was achieved through three steps.

  • PDF

Modeling of the Head-Related Transfer Functions with Optimum Reflection Wave Transfer Characteristics in Free-Field Listening over Headphones (헤드폰을 이용한 자유 음장 청취에서의 최적 반사 음파 전달 특성을 갖는 머리 전달 함수 모델링)

  • Yim, Jeong-Bin;Kim, Chun-Duck;Kang, Seong-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.16-25
    • /
    • 1997
  • A new method to model the HRTF's(Head-Related Transfer Function), which could give improvement of the sound localization accuracy using the spatial effects by the reflected sound wave transfer characteristics, is proposed. When using the HRTF model having reflected sound wave transfer characteristics, the accuracy of sound localization was quite improved up to about 23%, compared with using the direct wave transfer characteristics only. Furthermore, it is verified that the spatial impression could be a factor to enhance the ability of sound localization.

  • PDF

Study on Assessment of Displacement by Wave Force for Rubble Mound Breakwater and its Application to Design (파랑하중을 받는 굴착치환 사석경사식 방파제의 침하량 산정과 설계 적용성에 관한 연구)

  • Ahn, Ik-Seong;Park, Sang-Kil
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.4
    • /
    • pp.413-420
    • /
    • 2008
  • Wave force is an important factor which gives a direct affect to stability of the rubble mound breakwater. Particularly wave force has been considered as the main cause of displacement for replaced rubble mound breakwater which permits a little displacement to some degree. But the effect on displacement by wave force has not been considered and reflected in design. Therefore in this study, we compared numerical analysis displacement with field measured displacement so that the effect of wave force on displacement can be reflected in design. Result of the numerical analysis displacement was well consistent with field measured displacement data.