• Title/Summary/Keyword: Watersheds

Search Result 885, Processing Time 0.023 seconds

Dynamic Runoff of Non-point Sources Pollutants from Agricultural Areas (농촌지역에서 유출시간에 따른 비점오염물질의 유출평가)

  • Yi, Qitao;Hur, Chinhyu;Kim, Youngchul
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.773-783
    • /
    • 2008
  • In this paper, data collected from 22 different rural watersheds during stormflow conditions were analyzed. Those watersheds consisted of forest and cultivated land. EMC data analysis indicates that as agricultural land use increases, EMC values of TSS, COD and TN clearly tends to increase, but TP does not show a significant increase. Pattern of the pollutographs mostly has a similarity in hydrograph shape except nitrogen which inherently shows a variability and complication. The fraction of soluble reactive-P to TP increases as cultivated land use increases while mobile-nitrogen portion was higher in the runoff from forested watersheds than agricultural areas. During stormflow, pollutograph of the nitrogen was determined mainly by change in Particle-TKN as other pollutants but its effect is thought to be masked by decrease of dissolved form of nitrogen due to the dilution.

Comparison of Discharge Characteristics of NPS Pollutant Loads from Urban, Agricultural and Forestry Watersheds (도시, 농촌 및 임야유역으로부터 배출되는 비점원 오염부하의 특성비교)

  • Yur, Joonghyun;Kim, Geonha
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.2
    • /
    • pp.184-189
    • /
    • 2005
  • Impacts of non-point source pollution on water quality are well known. In this paper, effects of land use, precipitation characteristics, discharge characteristics on non-point source pollutant loadings at urban, agricultural and forestry watersheds were discussed. Rainfall runoffs from fifteen rainfall events were sampled and analysed at two urban watersheds, one rural watershed, and one forestry watershed. EMCs (Event Mean Concentration) were calculated based on monitored flow rates and concentrations. Statistical analysis carried out with runoff loadings and affecting variables indicated that runoff loadings are weakly correlated with the rainfall intensity and the dry days before rainfall events while showed no correlations with rainfall depth nor runoff quantity. By comparing EMCs between study watersheds on log-normal cumulative probability scale, EMCs ranking were in the descending order of urban watershed>agricultural watershed>forestry watershed for SS, TCOD, TN, and TP.

A Study of the Runoff Simulation and the Urbanization Effect on Small Watersheds (소규모 단지의 유출모의와 도시화 효과에 관한 연구)

  • 이병호
    • Water for future
    • /
    • v.24 no.2
    • /
    • pp.59-70
    • /
    • 1991
  • To simulate the mechanism of runoffs on seall watersheds, the ILLUDAS and the ILSD models are used in this study'. The transferability of these models to Korean watersheds and significant factors that could affect their applicability were examined through the analyzation of the hydrographs generated from runoff simulations. The runoff hydrographs from the watersheds with different urbanization rates are also simulated to investigate the degree of variation of the peak discharges the runoff rates, the runoff volumes and other hydrological factors related with urban runoff.

  • PDF

A Study on Run-off of Small Basins Representing the four major Rivers in Korea (소류역의 유출량에 관한 연구 (사대강을 중심으로))

  • 이석우;김시원;엄태영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.2
    • /
    • pp.55-63
    • /
    • 1980
  • To study run-off characteristics in the small watersheds in Korea, investigations had been carried out for a period of 4 years from 1972 to 1975 in the sample watersheds. The samples were selected in four major river basins such as the Han River, the Keum River, the Nakdong River and the Yongsan River. Water levels and rainfall data had been. collected from each sample area where the measuring instruments were installed. The findings of this investigation can be summarized as follows; 1. With an average runoff rate of 60% in the sample watersheds, the average runoff rate. in each sample proved to be as below; the Han River Basin : 41.4% the Keum River Basin : 61.7% the Nakdong River Basin : 69.4% the Yong San River Basin : 69.2% 2. The base flow rate in the sample watersheds proved to be 8.1 mm/month. 3. A comparison of the runoff obtained from actual measurements made and that calculated by the Kaijyama formula showed that the latter is 9.1% lower than the former.

  • PDF

A Study on the Water Quality Patterns of Unit Watersheds for the Management of TMDLs - in Nakdong River Basin - (수질오염총량관리 단위유역 수질변화 유형분석 - 낙동강수계를 대상으로 -)

  • Park, Jun Dae;Kim, Jin Lee;Rhew, Doug Hee;Jung, Dong Il
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.279-288
    • /
    • 2010
  • The water quality variations or changes are closely relevant to the characteristics of unit watersheds and have an effect on the attainment of their water quality goal. This study was conducted to analyze the water quality distribution and its change patterns of unit watersheds in Nakdong river basin. It revealed that 25 unit watersheds out of 41 showed the normality in water quality. Most of unit watersheds had a considerable variation in water quality, especially in the season of spring and summer but a little in terms of flow rate. Annual relative differences in water quality ranged from 13.0 to 26.6% with the maximum of 75%. 28 unit watersheds (62%) had the tendency to decrease in water quality as the flow rate increased while 13 (38%) to increase. The extension of standard flow led to considerable differences in water quality depending on its ranges, which meant uncertainties might be included in the process of TMDL development. It is suggested that annual average flow rate should be chosen as a standard flow in the area where the water quality change has little relation to the flow rate.

Estimation of Pollution Contribution TMDL Unit Watershed in Han-River according to hydrological characteristic using Flow Duration Curve (유량지속곡선을 이용한 수문특성별 한강수계 총량관리 단위유역의 오염기여도 추정)

  • Kim, Dong Young;Yoon, Chun Gyeong;Rhee, Han Pil;Choi, Jae Ho;Hwang, Ha Sun
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.497-509
    • /
    • 2019
  • After the Total Maximum Daily Loads(TMDLs) was applied, it became beyond the limit of concentration management. However, it does not adequately reflect the characteristics of various watersheds, and causes problems with local governments because of the standard flow set. Thus, in this study, the Han River system is organized into four groups in estimating the Pollution Contribution by applying the Flow Duration Curve(FDC) created by the daily flow of data from the HSPF. And the method of this study is expected to be valuable as basic data for the TMDLs. As a result, Group I contains the main watersheds with no large hydraulic structures and tributary watersheds. There is no specificity in the FDC and the Pollution Contribution is estimated as rainfall runoff. Group II contains watersheds near the city where the FDC is maintained above a certain level during the Low Flow Conditions and the Pollution Contribution is estimated as the discharge flow of large scale point pollution facilities. Group III contains the main watersheds in which the large hydraulic structures are installed and FDC is curved in the Low Flow Conditions. So the Pollution Contribution is estimated as the water quality of the large hydraulic structures. Group IV contains the upstream in mainstream watersheds in which the large hydraulic structures are installed and the FDC is disabled before the Low Flow Conditions. As the flow is concentrated in the High Flow Conditions, the non-point pollution sources are estimated as the Pollution Contribution.

Studies on the Stochastic Generation of Long Term Runoff (1) (장기유출랑의 추계학적 모의 발생에 관한 연구 (I))

  • 이순혁;맹승진;박종국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.3
    • /
    • pp.100-116
    • /
    • 1993
  • It is experienced fact that unreasonable design criterion and unsitable operation management for the agricultural structures including reservoirs based on short terms data of monthly flows have been brought about not only loss of lives, but also enormous property damage. For the solution of this point at issue, this study was conducted to simulate long series of synthetic monthly flows by multi-season first order Markov model with selection of best fitting frequency distribution and to make a comparison of statistical parameters between observed and synthetic flows of six watersheds in Yeong San and Seom Jin river systems. The results obtained through this study can be summarized as follows. 1.Both Gamma and two parameter lognormal distribution were found to be suitable ones for monthly flows in all watersheds by Kolmogorov-Smirnov test while those distributions were judged to be unfitness in Nam Pyeong of Yeong San and Song Jeong and Ab Rog watersheds of Seom Jin river systems in the $\chi$$^2$ goodness of fit test. 2.Most of the arithmetic mean values for synthetic monthly flows simulated by Gamma distribution are much closer to the results of the observed data than those of two parameter lognomal distribution in the applied watersheds. 3.Fluctuation for the coefficient of variation derived by Gamma distribution was shown in general as better agreement with the results of the observed data than that of two parameter lognormal distribution in the applied watersheds both in Yeong San and Seom Jin river systems. Especially, coefficients of variation calculated by Gamma distribution are seemed to be much closer to those of the observed data during July and August. 4.It can be concluded that synthetic monthly flows simulated by Gamma distribution are seemed to be much closer to the observed data than those by two parameter lognormal distribution in the applied watersheds. 5.It is to be desired that multi-season first order Markov model based on Gamma distribution which is confirmed as a good fitting one in this study would be compared with Harmonic synthetic model as a continuation follows.

  • PDF

Study of the Non-linear Relationships between Watershed Land Use and Biological Indicators of Streams - The Han River Basin - (유역 토지이용과 하천 생물지수의 비선형적 관계 연구 - 한강권역을 대상으로 -)

  • Park, Se-Rin;Lee, Jong-Won;Park, Yu-Jin;Lee, Sang-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.2
    • /
    • pp.55-67
    • /
    • 2022
  • Land use is a critical factor that affects the hydrological characteristics of watersheds, thereby determining the biological condition of streams. This study analyzes the effects of land uses in the watersheds on biological indicators of streams across the Han River basin using a linear model (LM) and generalized additive model (GAM). LULC and biological monitoring data of streams were obtained from the Korean Ministry of Environment. The proportions of urban, agricultural, and forest areas in the watersheds were regressed to the three biological indicators, including diatom, benthic macroinvertebrate, and fish of streams. The estimated LM and GAM models for the biological indicators were then compared, using regression determination R2 and AIC values. The results revealed that GAM models performed better than the LM models in explaining the variances of biological indicators of streams, indicating the non-linear relationships between biological indicators and land uses in watersheds. Also, the results suggested that the indicator of macroinvertebrates was the most sensitive indicator to land uses in watersheds. Although non-linear relationships between watershed land uses and biological indicators of streams could vary among biological indicators, it was consistent that streams' biological integrity significantly deteriorated by a relatively low percentage of urban areas. Meanwhile, biological indicators of streams were negatively affected by the relatively high percentage of agricultural areas. The results of this study can be integrated into effective quantitative criteria for the watershed management and land use plans to enhance the biological integrity of streams. In specific, land uses management plans in watersheds may need more close attention to urban land use changes than agricultural land uses to sustain the biological integrity of streams.

Prioritizing the target watersheds for permeable pavement to reduce flood damage in urban watersheds considering future climate scenarios (미래 기후 시나리오를 고려한 도시 유역 홍수 피해 저감을 위한 투수성 포장 시설 대상 유역 우선순위 선정)

  • Chae, Seung Taek;Song, Young Hoon;Lee, Joowon;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.2
    • /
    • pp.159-170
    • /
    • 2022
  • As the severity of water-related disasters increases in urban watersheds due to climate change, reducing flood damage in urban watersheds is one of the important issues. This study focuses on prioritizing the optimal site for permeable pavement to maximize the efficiency of reducing flood damage in urban watersheds in the future climate environment using multi-criteria decision making techniques. The Mokgamcheon watershed which is considerably urbanized than in the past was selected for the study area and its 27 sub-watersheds were considered as candidate sites. Six General Circulation Model (GCM) of Coupled Model Intercomparison Project 6(CMIP6) according to two Shared Socioeconomic Pathway (SSP) scenarios were used to estimate future monthly precipitation for the study area. The Driving force-Pressure-State-Impact-Response (DPSIR) framework was used to select the water quantity evaluation criteria for prioritizing permeable pavement, and the study area was modeled using ArcGIS and Storm Water Management Model (SWMM). For the values corresponding to the evaluation criteria based on the DPSIR framework, data from national statistics and long-term runoff simulation value of SWMM according to future monthly precipitation were used. Finally, the priority for permeable pavement was determined using the Fuzzy TOPSIS and Minimax regret method. The high priorities were concentrated in the downstream sub-watersheds where urbanization was more progressed and densely populated than the upstream watersheds.

Studies on the Derivation of the Instantaneous Unit Hydrograph for Small Watersheds of Main River Systems in Korea (한국주요빙계의 소유역에 대한 순간단위권 유도에 관한 연구 (I))

  • 이순혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4296-4311
    • /
    • 1977
  • This study was conducted to derive an Instantaneous Unit Hydrograph for the accurate and reliable unitgraph which can be used to the estimation and control of flood for the development of agricultural water resources and rational design of hydraulic structures. Eight small watersheds were selected as studying basins from Han, Geum, Nakdong, Yeongsan and Inchon River systems which may be considered as a main river systems in Korea. The area of small watersheds are within the range of 85 to 470$\textrm{km}^2$. It is to derive an accurate Instantaneous Unit Hydrograph under the condition of having a short duration of heavy rain and uniform rainfall intensity with the basic and reliable data of rainfall records, pluviographs, records of river stages and of the main river systems mentioned above. Investigation was carried out for the relations between measurable unitgraph and watershed characteristics such as watershed area, A, river length L, and centroid distance of the watershed area, Lca. Especially, this study laid emphasis on the derivation and application of Instantaneous Unit Hydrograph (IUH) by applying Nash's conceptual model and by using an electronic computer. I U H by Nash's conceptual model and I U H by flood routing which can be applied to the ungaged small watersheds were derived and compared with each other to the observed unitgraph. 1 U H for each small watersheds can be solved by using an electronic computer. The results summarized for these studies are as follows; 1. Distribution of uniform rainfall intensity appears in the analysis for the temporal rainfall pattern of selected heavy rainfall event. 2. Mean value of recession constants, Kl, is 0.931 in all watersheds observed. 3. Time to peak discharge, Tp, occurs at the position of 0.02 Tb, base length of hlrdrograph with an indication of lower value than that in larger watersheds. 4. Peak discharge, Qp, in relation to the watershed area, A, and effective rainfall, R, is found to be {{{{ { Q}_{ p} = { 0.895} over { { A}^{0.145 } } }}}} AR having high significance of correlation coefficient, 0.927, between peak discharge, Qp, and effective rainfall, R. Design chart for the peak discharge (refer to Fig. 15) with watershed area and effective rainfall was established by the author. 5. The mean slopes of main streams within the range of 1.46 meters per kilometer to 13.6 meter per kilometer. These indicate higher slopes in the small watersheds than those in larger watersheds. Lengths of main streams are within the range of 9.4 kilometer to 41.75 kilometer, which can be regarded as a short distance. It is remarkable thing that the time of flood concentration was more rapid in the small watersheds than that in the other larger watersheds. 6. Length of main stream, L, in relation to the watershed area, A, is found to be L=2.044A0.48 having a high significance of correlation coefficient, 0.968. 7. Watershed lag, Lg, in hrs in relation to the watershed area, A, and length of main stream, L, was derived as Lg=3.228 A0.904 L-1.293 with a high significance. On the other hand, It was found that watershed lag, Lg, could also be expressed as {{{{Lg=0.247 { ( { LLca} over { SQRT { S} } )}^{ 0.604} }}}} in connection with the product of main stream length and the centroid length of the basin of the watershed area, LLca which could be expressed as a measure of the shape and the size of the watershed with the slopes except watershed area, A. But the latter showed a lower correlation than that of the former in the significance test. Therefore, it can be concluded that watershed lag, Lg, is more closely related with the such watersheds characteristics as watershed area and length of main stream in the small watersheds. Empirical formula for the peak discharge per unit area, qp, ㎥/sec/$\textrm{km}^2$, was derived as qp=10-0.389-0.0424Lg with a high significance, r=0.91. This indicates that the peak discharge per unit area of the unitgraph is in inverse proportion to the watershed lag time. 8. The base length of the unitgraph, Tb, in connection with the watershed lag, Lg, was extra.essed as {{{{ { T}_{ b} =1.14+0.564( { Lg} over {24 } )}}}} which has defined with a high significance. 9. For the derivation of IUH by applying linear conceptual model, the storage constant, K, with the length of main stream, L, and slopes, S, was adopted as {{{{K=0.1197( {L } over { SQRT {S } } )}}}} with a highly significant correlation coefficient, 0.90. Gamma function argument, N, derived with such watershed characteristics as watershed area, A, river length, L, centroid distance of the basin of the watershed area, Lca, and slopes, S, was found to be N=49.2 A1.481L-2.202 Lca-1.297 S-0.112 with a high significance having the F value, 4.83, through analysis of variance. 10. According to the linear conceptual model, Formular established in relation to the time distribution, Peak discharge and time to peak discharge for instantaneous Unit Hydrograph when unit effective rainfall of unitgraph and dimension of watershed area are applied as 10mm, and $\textrm{km}^2$ respectively are as follows; Time distribution of IUH {{{{u(0, t)= { 2.78A} over {K GAMMA (N) } { e}^{-t/k } { (t.K)}^{N-1 } }}}} (㎥/sec) Peak discharge of IUH {{{{ {u(0, t) }_{max } = { 2.78A} over {K GAMMA (N) } { e}^{-(N-1) } { (N-1)}^{N-1 } }}}} (㎥/sec) Time to peak discharge of IUH tp=(N-1)K (hrs) 11. Through mathematical analysis in the recession curve of Hydrograph, It was confirmed that empirical formula of Gamma function argument, N, had connection with recession constant, Kl, peak discharge, QP, and time to peak discharge, tp, as {{{{{ K'} over { { t}_{ p} } = { 1} over {N-1 } - { ln { t} over { { t}_{p } } } over {ln { Q} over { { Q}_{p } } } }}}} where {{{{K'= { 1} over { { lnK}_{1 } } }}}} 12. Linking the two, empirical formulars for storage constant, K, and Gamma function argument, N, into closer relations with each other, derivation of unit hydrograph for the ungaged small watersheds can be established by having formulars for the time distribution and peak discharge of IUH as follows. Time distribution of IUH u(0, t)=23.2 A L-1S1/2 F(N, K, t) (㎥/sec) where {{{{F(N, K, t)= { { e}^{-t/k } { (t/K)}^{N-1 } } over { GAMMA (N) } }}}} Peak discharge of IUH) u(0, t)max=23.2 A L-1S1/2 F(N) (㎥/sec) where {{{{F(N)= { { e}^{-(N-1) } { (N-1)}^{N-1 } } over { GAMMA (N) } }}}} 13. The base length of the Time-Area Diagram for the IUH was given by {{{{C=0.778 { ( { LLca} over { SQRT { S} } )}^{0.423 } }}}} with correlation coefficient, 0.85, which has an indication of the relations to the length of main stream, L, centroid distance of the basin of the watershed area, Lca, and slopes, S. 14. Relative errors in the peak discharge of the IUH by using linear conceptual model and IUH by routing showed to be 2.5 and 16.9 percent respectively to the peak of observed unitgraph. Therefore, it confirmed that the accuracy of IUH using linear conceptual model was approaching more closely to the observed unitgraph than that of the flood routing in the small watersheds.

  • PDF