• Title/Summary/Keyword: Watershed Plan

Search Result 188, Processing Time 0.027 seconds

Development of Urban Flood Risk Index for the Cheonggyecheon Watershed Using SWMM (SWMM을 이용한 청계천 유역의 도시홍수 위험도 지수 개발)

  • Yang, Jeong-Seok;Kim, Il-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.385-393
    • /
    • 2016
  • In this study, we analyzed th Cheonggyecheon watershed for urban flood risk index. SWMM model configuration based on each watershed data. And it was set as the final index calculated indicators related to the humanities, social and environmental. Each indicator was standardized and weighted using the Delphi method. Finally, select the danger area through urban flood risk index. Determined 12 indices according to the hazard and vulnerability. Vulnerability is selected the index divided by three factors. 21 watersheds were analyzed through urban flood risk index. The top of three areas of index is Jeongneung 1, Majang, Pil-dong, each index is 0.533, 0.494, 0.381. The lowest index is soongin 0.216. Urban flood risk index developed in this study can be applied to other regions in Korea for establishing national water resources management plan.

Applicability Evaluation to Grid-based Rainfall-Runoff-Sediment Model for Sediment Discharge Estimation (격자기반 강우-유출-유사 모형의 유사량 산정에 관한 적용성 평가)

  • Choi, Hyun Gu;Park, Jun Hyung;Han, Kun Yeun
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.132-143
    • /
    • 2017
  • It is essential to obtain periodic sediment discharge data in a river in order to minimize problems that may arise from the erosion, transport, and deposition of sediment. However, it is difficult to estimate sediment discharge by the sediment discharge measurement plan in Korea at present, and empirical fomulas or numerical models are used to replace them. This paper has applied the K-DRUM model, a grid-based rainfall-runoff-sediment model, to estimate sediment discharge and ensure the continuity of the data in the watershed. Discharge and sediment load in 17 watersheds were estimated and the applicability of the model was analyzed through comparisons with measured data. For quantitative evaluation, NSE, PBIAS and RSR items were used, and discharge results reflected the tendency of rainfall and showed high statistical value. In case of sediment discharge, the soil erosion process of the watershed is physically well reflected. When the calibration was performed using the measure data, the applicability seems to be excellent in estimating the continuous sediment discharge data in the real watershed.

Development of Evaluation Indices for Preservation Strategies for Agricultural Reservoir Watersheds (농업용 저수지 유역의 보전전략 수립을 위한 특성평가지표 개발)

  • Jang, Byoung-Kwan;Whang, Bo-Chul;Hwang, Kook-Woong
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.35 no.6
    • /
    • pp.14-20
    • /
    • 2008
  • The agricultural reservoir watershed plan suggests three specific indices or ways to measure the potential for maintaining reservoir quality in balance with existing or proposed uses: an index of the reservoir's vulnerability to accelerated eutrophication, an index of the degree of land use intensity in reservoir watersheds, and an index of present water quality. Three items that contribute to reservoir eutrophication are included in the vulnerability index: the ratio of reservoir volume to drainage-basin area, shoreline configuration, and mean depth. The watershed land-use intensity index is based on road proximity and upland watershed land-use intensity. Water quality can be given a COD level. All six indicators are considered separately and then rated as follow: low (1), medium (2), or high (3). Five out of 30survey sites were less than 8points, 17sites were less than 11points and 8sites were less than 14points. This study suggests that the sites in the first ranking were potential areas for preservation, sites in the second ranking were potential areas for environmental friendly planning and sites in the third ranking were potential areas for residential need oriented planning. The advantage of this study is the low cost of gathering data for the development of local policy for the planning, management and protection of reservoir basin.

A Study on the Temporal Change of Soil Loss of Kyungan River Basin with GIS (토지이용변화에 따른 경안천 유역 토양유실에 관한 연구)

  • 김상욱;박종화
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 1995.12a
    • /
    • pp.22-32
    • /
    • 1995
  • The purpose of this study is to estimate not only the watershed soil loss but also its temporal changes of Kyungan River basin, the study area, due to the land development. To analyze the soil loss of the river basin, USLE was employed. GIS and remote sensing were also utilized to estimate the soil loss. The data for this analysis consist of a series of thematic map and remotely sensed data. The remotely sensed images for this study are Landsat TM(Oct, 28, 1997 & Sep. 22, 1992), In Kyungan River basin, not only the detection of temporal changes of land use and GVI, but also the estimation of soil loss provided very significant factors that affect to the watershed environment quality. The management of the factors of vegetative cover, slope steepness and length were the keys to reduce soil loss and solve conservation and protection issues of Kyungan River basin. GIS application with USLE to the watershed analysis allows the planner to recognize sensitive sites and to plan strategies to minimize soil loss.

  • PDF

Development of Information System based on GIS for Analyzing Basin-Wide Pollutant Washoff (유역오염원 수질거동해석을 위한 GIS기반 정보시스템 개발)

  • Park, Dae-Hee;Ha, Sung-Ryong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.34-44
    • /
    • 2006
  • Simulation models allow researchers to model large hydrological catchment for comprehensive management of the water resources and explication of the diffuse pollution processes, such as land-use changes by development plan of the region. Recently, there have been reported many researches that examine water body quality using Geographic Information System (GIS) and dynamic watershed models such as AGNPS, HSPF, SWAT that necessitate handling large amounts of data. The aim of this study is to develop a watershed based water quality estimation system for the impact assessment on stream water quality. KBASIN-HSPF, proposed in this study, provides easy data compiling for HSPF by facilitating the setup and simulation process. It also assists the spatial interpretation of point and non-point pollutant information and thiessen rainfall creation and pre and post processing for large environmental data An integration methodology of GIS and water quality model for the preprocessing geo-morphologic data was designed by coupling the data model KBASIN-HSPF interface comprises four modules: registration and modification of basic environmental information, watershed delineation generator, watershed geo-morphologic index calculator and model input file processor. KBASIN-HSPF was applied to simulate the water quality impact by variation of subbasin pollution discharge structure.

  • PDF

Analysis of Scenarios for Environmental Instream Flow Considering Water Quality in Saemangeum Watershed (새만금유역의 수질을 고려한 환경유지용수의 시나리오 분석)

  • Kim, Se-Min;Park, Young-Ki;Won, Chan-Hee;Kim, Min-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.3
    • /
    • pp.117-127
    • /
    • 2016
  • In this study, analyzed scenarios of the environmental instream flow for water quality improvement in Saemangeum watershed. In order to get an environmental instream flow, Methodology is selected for Retention-Basin, reservoir expansion, new dam construction, Modification of water intake and drainage system, Rearrangement of plan for system which Yongdam and Seomjin river dam have been used water supply. The study composed of diverse scenario of Environmental instream flow increasement and analyzed the effect of improving the water quality by the QUAL2K model and calculation of runoff for saemangeum watershed by SWAT model. The following water quality indicators have been simulated in irrigation and non-irrigation period for BOD and T-P. When scenarios applied to water quality model, Improvement rate in the water quality for Total Maximum Daily loads of Mankyung B unit watershed during irrigation and non-irrigation period is BOD (28.70%), T-P (17.09%) and BOD (28.51%), T-P (28.68%) respectively. Dongjin A unit watershed during irrigation and non-irrigation period is BOD (14.39%), T-P (14.59%) and BOD (15.54%), T-P (19.46%) similary. Simulation results is to quantify the constribution of the improvement in the water quality. In particular, It was demonstrative that improving effect for water quality was evaluated to be great in non-irrigation period.

Water Quality Improvement Plans based on the Analysis of Pollutant Discharge Characteristics and Water Quality Modelling of Seokmun Reservoir Watershed (석문호 유역 오염물질 배출특성 분석 및 수질모델링에 기초한 수질개선방안 연구)

  • Choi, Moojin;Jung, Woohyeuk;Choi, Jaehun;Kim, Youngil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.10
    • /
    • pp.581-590
    • /
    • 2017
  • For effective improvement of water quality in Seokmun reservoir, this study implemented various analyses including the tributary water quality and flowrate monitoring, contamination of sediment, investigation of pollution source, selection of priority management target tributary by stream grouping method. The COD concentration of the majority of tributaries in Seokmun reservoir watershed was relatively higher than BOD concentration. The concentration of water pollutants regardless of water quality parameters in Yeokcheon, Dangjincheon, Sigokcheon, Baekseokcheon, small stream in Jinkwanri and Janghangri were higher than the other tributaries. The pollution sources in the Seokmun reservoir watershed were mostly distributed in the population, livestock, and industry. The pollutants, which located in Yeokcheon, Dangjincheon, Baekseokcheon, and small stream in Janghangri selected as priority management target tributary, should be preferentially reduced for improving the water quality in Seokmun reservoir. As the evaluation results of water quality in Seokmun reservoir for the effect of water quality improvement according to various scenarios using water quality model, it was found that the water quality in Seokmun reservoir due to the construction of a wastewater treatment plant for management of pollutants in the watershed would be satisfied the class V of water environment standard in reservoir.

An Estimation of Flood Quantiles at Ungauged Locations by Index Flood Frequency Curves (지표홍수 빈도곡선의 개발에 의한 미 계측지점의 확률 홍수량 추정)

  • Yoon, Yong-Nam;Shin, Chang-Kun;Jang, Su-Hyung
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • The study shows the possible use of the index flood frequency curves for an estimation of flood quantiles at ungauged locations. Flood frequency analysis were made for the annual maximum flood data series at 9 available stations in the Han river basin. From the flood frquency curve at each station the mean annual flood of 2.33-year return period was determined and the ratios of the flood magnitude of various return period to the mean annual flood at each station were averaged throughout the Han river basin, resulting mean flood ratios of different return periods. A correlation analysis was made between the mean annual flood and physiographic parameters of the watersheds i.e, the watershed area and mean river channel slope, resulting an empirical multiple linear regression equation over the whole Han river basin. For unguaged watershed the flood of a specified return period could be estimated by multiplying the mead flood ratio corresponding the return period with the mean annual flood computed by the empirical formula developed in terms of the watershed area and river channel slope. To verify the applicability of the methodology developed in the present study the floods of various return periods determined for the watershed in the river channel improvement plan formulation by the Ministry of Construction and Transportation(MOCT) were compared with those estimated by the present method. The result proved a resonable agreement up to the watershed area of approximately 2,000k $m^2$. It is suggested that the practice of design flood estimation based on the rainfall-runoff analysis might have to be reevaluated because it involves too much uncertainties in the hydrologic data and rainfall-runoff model calibration.

Application of dual drainage system model for inundation analysis of complex watershed (복합유역의 침수해석을 위한 이중배수체계 유출모형의 적용)

  • Lee, Jaejoon;Kwak, Changjae;Lee, Sungho
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.301-312
    • /
    • 2019
  • The importance of the dual drainage system model has increased as the urban flood damage has increased due to the increase of local storm due to climate change. The dual drainage model is a model for more accurately expressing the phenomena of surface flow and conduit flow. Surface runoff and pipe runoff are analyzed through the respective equations and parameters. And the results are expressed visually in various ways. Therefore, inundation analysis results of dual drainage model are used as important data for urban flood prevention plan. In this study, the applicability of the COBRA model, which can be interpreted by combining the dual drainage system with the natural watershed and the urban watershed, was investigated. And the results were compared with other dual drainage models (XP-SWMM, UFAM) to determine suitability of the results. For the same watershed, the XP-SWMM simulates the flooding characteristics of 3 types of dual drainage system model and the internal flooding characteristics due to the lack of capacity of the conduit. UFAM showed the lowest inundation analysis results compared with the other models according to characteristics of consideration of street inlet. COBRA showed the general result that the flooded area and the maximum flooding depth are proportional to the increase in rainfall. It is considered that the COBRA model is good in terms of the stability of the model considering the characteristics of the model to simulate the effective rainfall according to the soil conditions and the realistic appearance of the flooding due to the surface reservoir.

Regionalization of rainfall-runoff model parameters based on the correlation of regional characteristic factors (지역특성인자의 상호연관성을 고려한 강우-유출모형 매개변수 지역화)

  • Kim, Jin-Guk;Sumyia, Uranchimeg;Kim, Tae-Jeong;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.955-968
    • /
    • 2021
  • A water resource plan is routinely based on a natural flow and can be estimated using observed streamflow data or a long-term continuous rainfall-runoff model. However, the watershed with the natural flow is very limited to the upstream area of the dam. In particular, for the ungauged watershed, a rainfall-runoff model is established for the gauged watershed, and the model is then applied to the ungauged watershed by transferring the associated parameters. In this study, the GR4J rainfall-runoff model is mainly used to regionalize the parameters that are estimated from the 14 dam watershed via an optimization process. In terms of optimizing the parameters, the Bayesian approach was applied to consider the uncertainty of parameters quantitatively, and a number of parameter samples obtained from the posterior distribution were used for the regionalization. Here, the relationship between the estimated parameters and the topographical factors was first identified, and the dependencies between them are effectively modeled by a Copula function approach to obtain the regionalized parameters. The predicted streamflow with the use of regionalized parameters showed a good agreement with that of the observed with a correlation of about 0.8. It was found that the proposed regionalized framework is able to effectively simulate streamflow for the ungauged watersheds by the use of the regionalized parameters, along with the associated uncertainty, informed by the basin characteristics.