• Title/Summary/Keyword: Watershed Approach

Search Result 175, Processing Time 0.024 seconds

Integrated Watershed Modeling Under Uncertainty (불확실성을 고려한 통합유역모델링)

  • Ham, Jong-Hwa;Yoon, Chun-Gyoung;Loucks, Daniel P.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.4
    • /
    • pp.13-22
    • /
    • 2007
  • The uncertainty in water quality model predictions is inevitably high due to natural stochasticity, model uncertainty, and parameter uncertainty. An integrated modeling system under uncertainty was described and demonstrated for use in watershed management and receiving-water quality prediction. A watershed model (HSPF), a receiving water quality model (WASP), and a wetland model (NPS-WET) were incorporated into an integrated modeling system (modified-BASINS) and applied to the Hwaseong Reservoir watershed. Reservoir water quality was predicted using the calibrated integrated modeling system, and the deterministic integrated modeling output was useful for estimating mean water quality given future watershed conditions and assessing the spatial distribution of pollutant loads. A Monte Carlo simulation was used to investigate the effect of various uncertainties on output prediction. Without pollution control measures in the watershed, the concentrations of total nitrogen (T-N) and total phosphorous (T-P) in the Hwaseong Reservoir, considering uncertainty, would be less than about 4.8 and 0.26 mg 4.8 and 0.26 mg $L^{-1}$, respectively, with 95% confidence. The effects of two watershed management practices, a wastewater treatment plant (WWTP) and a constructed wetland (WETLAND), were evaluated. The combined scenario (WWTP + WETLAND) was the most effective at improving reservoir water quality, bringing concentrations of T-N and T-P in the Hwaseong Reservoir to less than 3.54 and 0.15 mg ${L^{-1}$, 26.7 and 42.9% improvements, respectively, with 95% confidence. Overall, the Monte Carlo simulation in the integrated modeling system was practical for estimating uncertainty and reliable in water quality prediction. The approach described here may allow decisions to be made based on probability and level of risk, and its application is recommended.

Pseudo-Distance Map Based Watersheds for Robust Region Segmentation

  • Jeon, Byoung-Ki;Jang, Jeong-Hun;Hong, Ki-Sang
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.283-286
    • /
    • 2001
  • In this paper, we present a robust region segmentation method based on the watershed transformation of a pseudo-distance map (PDM). A usual approach for the segmentation of a gray-scale image with the watershed algorithm is to apply it to a gradient magnitude image or the Euclidean distance map (EDM) of an edge image. However, it is well known that this approach suffers from the oversegmentation of the given image due to noisy gradients or spurious edges caused by a thresholding operation. In this paper we show thor applying the watershed algorithm to the EDM, which is a regularized version of the EDM and is directly computed form the edgestrength function (ESF) of the input image, significantly reduces the oversegmentation, and the final segmentation results obtained by a simple region-merging process are more reliable and less noisy than those of the gradient-or EDM-based methods. We also propose a simple and efficient region-merging criterion considering both boundary strengths and inner intensities of regions to be merged. The robustness of our method is proven by testing it with a variety of synthetic and real images.

  • PDF

Estimation of Irrigation Return Flow on Agricultural Watershed in Madun Reservoir (마둔저수지 농업유역의 관개 회귀수량 추정)

  • Kim, Ha-Young;Nam, Won-Ho;Mun, Young-Sik;Bang, Na-Kyoung;Kim, Han-Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.2
    • /
    • pp.85-96
    • /
    • 2021
  • Irrigation return flow is defined as the excess of irrigation water that is not evapotranspirated by direct surface drainage, and which returns to an aquifer. It is important to quantitatively estimate the irrigation return flow of the water cycle in an agricultural watershed. However, the previous studies on irrigation return flow rates are limitations in quantifying the return flow rate by region. Therefore, simulating irrigation return flow by accounting for various water loss rates derived from agricultural practices is necessary while the hydrologic and hydraulic modeling of cultivated canal-irrigated watersheds. In this study, the irrigation return flow rate of agricultural water, especially for the entire agricultural watershed, was estimated using the SWMM (Storm Water Management Model) module from 2010 to 2019 for the Madun reservoir located in Anseong, Gyeonggi-do. The results of SWMM simulation and water balance analysis estimated irrigation return flow rate. The estimated average annual irrigation return flow ratio during the period from 2010 to 2019 was approximately 55.3% of the annual irrigation amounts of which 35.9% was rapid return flow and 19.4% was delayed return flow. Based on these results, the hydrologic and hydraulic modeling approach can provide a valuable approach for estimating the irrigation return flow under different hydrological and water management conditions.

Background Subtraction for Moving Cameras based on trajectory-controlled segmentation and Label Inference

  • Yin, Xiaoqing;Wang, Bin;Li, Weili;Liu, Yu;Zhang, Maojun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4092-4107
    • /
    • 2015
  • We propose a background subtraction method for moving cameras based on trajectory classification, image segmentation and label inference. In the trajectory classification process, PCA-based outlier detection strategy is used to remove the outliers in the foreground trajectories. Combining optical flow trajectory with watershed algorithm, we propose a trajectory-controlled watershed segmentation algorithm which effectively improves the edge-preserving performance and prevents the over-smooth problem. Finally, label inference based on Markov Random field is conducted for labeling the unlabeled pixels. Experimental results on the motionseg database demonstrate the promising performance of the proposed approach compared with other competing methods.

Application of ArcGIS-based Model Developed to Estimate Monthly Potential Soil Loss (월단위 토양유실가능성 추정을 위해 개발된 ArcGIS 기반의 모형 적용)

  • Yu, Na Young;Shin, Min Hwan;Kim, Jonggun;Park, Youn Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.109-126
    • /
    • 2017
  • Universal soil loss equation (USLE) is used to estimate soil loss solely or employed in any hydrologic models. Since soil erosion has been an issue in South Korea for decades, the Ministry of Environment enacted a law to regulate soil erosion in 2012, which is the Notification of topsoil erosion status. The notification is composed of preliminary and field investigations, the preliminary investigation suggests to use USLE and provides USLE factors. However, the USLE factors provided in the notification was prepared at least 10 years ago, therefore it is limited to reflect recent climate changes. Moreover the current yearly USLE approach does not provide an opportunity to consider seasonal variation of soil erosion in South Korea. A GIS-based model was therefore applied to evaluate the yearly USLE approach in the notification. The GIS-based model employs USLE to estimate soil loss, providing an opportunity to estimate monthly soil loss with monthly USLE factor databases. Soil loss was compared in five watersheds, which were Geumgang, Hangang, Nakdonggang, Seomjingang, and Yeongsangang watersheds. The minimum difference was found at Seomjingang watershed, the yearly potential soil loss were 40.15 Mg/ha/yr by the notification approach and 34.42 Mg/ha/yr by the GIS-based model using monthly approach. And, the maximum difference was found at Nakdonggang watershed, the yearly potential soil loss were 27.01 Mg/ha/yr by the notification approach and 10.67 Mg/ha/yr by the GIS-based model using monthly approach. As a part of the study result, it was found that the potential soil loss can be overestimated in the notification approach.

The Application of the GWLF model for Rural Small Watershed (농촌 소유역에 대한 GWLF 모형의 적용성 검토)

  • Hwang, Sye-Woon;Jang, Tae-Il;Park, Seung-Woo;Kang, Moon-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.3
    • /
    • pp.23-34
    • /
    • 2006
  • This study reviews the applicability of the GWLF (Generalized Watershed Loading Function) model, which is based on a loading function that requires only a relatively small amount of data, in a small agricultural watershed. The hydrological data was collected from 1996 to 2004 for a study area based on the HP#6 upper stream reservoir small watershed area. This data was then used to calibrate and verify the model. A simulation based on the model yielded $R^2$ values of $0.47\sim0.89$. This is considered to have high applicability when compared to the simulation and the observed results, which yielded relatively high values of $R^2$ for SS (Suspended Solid), TN (Total Nitrogen), and TP (Total Phosphorus) of 0.58, 0.47 and 0.62, respectively. This study provides a useful approach fur researchers selecting appropriate models to use the insufficient measuring data for rural watersheds.

Assessment of Groundwater Flow Modeling according to Hydraulic Conductivity Zonation in the Dae-jeong Watershed of Jeju Island (제주도 대정유역의 수리전도도 적용에 따른 지하수 모델링 결과 평가)

  • Park, Jae-Kyu;Kim, Min-Chul;Yang, Sung-Kee;Lee, Jun-ho;Kim, Yong-Seok
    • Journal of Environmental Science International
    • /
    • v.25 no.12
    • /
    • pp.1727-1738
    • /
    • 2016
  • In this study, groundwater flow was analyzed targeting Dae-jeong watershed, which exhibited the largest variations of groundwater levels at the identical elevation points among the 16 watersheds of Jeju Island. The issues of the methods applied in practice were identified and improvement plans were suggested. This groundwater-flow estimates derived by applying hydraulic conductivity values onto zones of equal topographic ground level were found to be quite different from actual measured groundwater flow. Conversely, groundwater-flow estimates that utilized hydraulic conductivity values applied onto groundwater-level equipotential lines indicated relatively lesser divergences from actual measured groundwater flow. The reliabilities of the two approaches were assessed for 60 randomly selected points on DEM (digital elevation model) maps, The method using hydraulic conductivity values applied onto groundwater-level contours turned out to be the more reliable approach for the Dae-jeong watershed in Jeju Island.

Assessment of Groundwater Quality on a Watershed Scale by Using Groundwater Quality Monitoring Data (지하수수질측정망 자료를 이용한 유역단위 지하수 수질등급 평가)

  • Kim, Jeong Jik;Hyun, Yunjung
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.186-195
    • /
    • 2021
  • In Korea, groundwater quality is monitored through National Groundwater Quality Monitoring Network (NGQMN) administered by Ministry of Environment. For a given contaminant, compliance to groundwater quality standards is assessed on a annual basis by monitoring the number of incidents that concentration exceeds the regulatory limit. However, this approach provides only a fractional information about groundwater quality degradation, and more crucial information such as location and severity of the contamination cannot be obtained. For better groundwater quality management on a watershed, a more spatially informative and intuitive method is required. This study presents two statistical methods to convert point-wise monitoring data into information on groundwater quality status of a watershed by using a proposed grading scale. The proposed grading system is based on readily available reference standards that classify the water quality into 4 grades. The methods were evaluated with NO3-, Cl-, and total coliform data in Geum River basin. The analyses revealed that groundwater in most watersheds of Geum River basin is good for domestic or/and drinking with no treatment. But, there was notable quality degradation in Bunam seawall and So-oak downstream standard watersheds contaminated by NO3- and Cl-, respectively.

Assessment of water use vulnerability in the unit watersheds using TOPSIS approach with subjective and objective weights (주관적·객관적 가중치를 활용한 TOPSIS 기반 단위유역별 물이용 취약성 평가)

  • Park, Hye Sun;Kim, Jeong Bin;Um, Myoung-Jin;Kim, Yeonjoo
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.8
    • /
    • pp.685-692
    • /
    • 2016
  • This study aimed to develop the indicator-based approach to assess water use vulnerability in watersheds and applied to the unit watershed within the Han River watershed. Vulnerability indices were comprised of three sub-components (exposure, sensitivity, adaptive capacity) with respect to water use. The indicators were made up of 16 water use indicators. Then we estimated vulnerability indices using the Technique for Order of Preference by Similarity to Ideal Solution approach (TOPSIS). We collected environmental and socio-economic data from national statistics database, and used them for simulated results by the Soil and Water Assessment Tool (SWAT) model. For estimating the weighted values for each indicator, expert surveys for subjective weight and data-based Shannon's entropy method for objective weight were utilized. With comparing the vulnerability ranks and analyzing rank correlation between two methods, we evaluated the vulnerabilities for the Han River watershed. For water use, vulnerable watersheds showed high water use and the water leakage ratio. The indices from both weighting methods showed similar spatial distribution in general. Such results suggests that the approach to consider different weighting methods would be important for reliably assessing the water use vulnerability in watersheds.

Grid Based Nonpoint Source Pollution Load Modelling

  • Niaraki, Abolghasem Sadeghi;Park, Jae-Min;Kim, Kye-Hyun;Lee, Chul-Yong
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.246-251
    • /
    • 2007
  • The purpose of this study is to develop a grid based model for calculating the critical nonpoint source (NPS) pollution load (BOD, TN, TP) in Nak-dong area in South Korea. In the last two decades, NPS pollution has become a topic for research that resulted in the development of numerous modeling techniques. Watershed researchers need to be able to emphasis on the characterization of water quality, including NPS pollution loads estimates. Geographic Information System (GIS) has been designed for the assessment of NPS pollution in a watershed. It uses different data such as DEM, precipitation, stream network, discharge, and land use data sets and utilizes a grid representation of a watershed for the approximation of average annual pollution loads and concentrations. The difficulty in traditional NPS modeling is the problem of identifying sources and quantifying the loads. This research is intended to investigate the correlation of NPS pollution concentrations with land uses in a watershed by calculating Expected Mean Concentrations (EMC). This work was accomplished using a grid based modelling technique that encompasses three stages. The first step includes estimating runoff grid by means of the precipitation grid and runoff coefficient. The second step is deriving the gird based model for calculating NPS pollution loads. The last step is validating the gird based model with traditional pollution loads calculation by applying statistical t-test method. The results on real data, illustrate the merits of the grid based modelling approach. Therefore, this model investigates a method of estimating and simulating point loads along with the spatially distributed NPS pollution loads. The pollutant concentration from local runoff is supposed to be directly related to land use in the region and is not considered to vary from event to event or within areas of similar land uses. By consideration of this point, it is anticipated that a single mean estimated pollutant concentration is assigned to all land uses rather than taking into account unique concentrations for different soil types, crops, and so on.

  • PDF