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Abstract

In this paper, we present a robust region segmenta-
tion method based on the watershed transformation of a
pseudo-distance map (PDM). A usual approach for the
segmentation of a gray-scale image with the watershed
algorithm is to apply it to a gradient magnitude image
or the Euclidean distance map (EDM) of an edge image.
However, it is well known that this approach suffers from
the oversegmentation of the given image due to noisy gra-
dients or spurious edges caused by a thresholding oper-
ation. In this paper, we show that applying the water-
shed algorithm to the PDM, which is a regularized ver-
sion of the EDM and is directly computed from the edge-
strength function (ESF) of the input image, significantly
reduces the oversegmentation, and the final segmentation
results obtained by a simple region-merging process are
more reliable and less noisy than those of the gradient- or
EDM-based methods. We also propose a simple and effi-
cient region-merging criterion considering both boundary
strengths and inner intensities of regions to be merged.
The robustness of our method is proven by testing it with
a variety of synthetic and real images.

1. Introduction

Image segmentation is one of the most important pro-
cesses for image understanding and analysis such as
recognition, visualization, and object-based compression.
Therefore, many segmentation techniques have been pro-
posed. Among them, the watershed transformation is
known as a very powerful segmentation tool in many ap-
plications 2], {5]. A typical approach for segmenting a
gray-scale image with the watershed transformation is to
make use of ifs gradient image as an input to the trans-
formation since high gradients constitute watershed lines
that correspond to the region boundaries of the gray-scale
image. This method is called the gradient watershed. In
another approach [5], the Euclidean distance map (EDM)
constructed from an edge image is utilized since the wa-
tershed algorithm has a characteristic of separating con-
nected or overlapping blobs when applied to the corre-
sponding EDM. However, the above approaches usually
give rise to a serious oversegmentation problem due to

noisy gradients or spurious edges caused by the thresh-
olding operation.

In this paper, we propose a new segmentation method
based on the watershed transformation of a pseudo-
distance map (PDM), which provides inijtial segmenta-
tion results better than the conventional methods. A PDM
can be thought of as a regularized version of an EDM.
While the EDM is obtained from an edge image, the
PDM is directly computed from the edge-strength func-
tion (ESF) of a given gray-scale image without thresh-
olding it. The value of the PDM is almost equal to zero
where edge strength is relatively large, and it has nearly
constant slopes at the points with small edge strength
except at the positions where two opposite slopes meet,
which in fact, correspond to the skeleton of the input im-
age. Initial segmentation results are obtained by apply-
ing the watershed transformation to the inverted PDM.
Due to the full utilization of edge strength information
and the regularization effect of the variational formula-
tion, the watershed transformation of the inverted PDM
usually produces more reliable and less noisy initial seg-
mentation results than the gradient- or EDM-based meth-
ods while preserving the advantage of the EDM-based
method. Through several experiments, we show that our
region-merging method together with our initial segmen-
tation method gives robust and reliable final segmentation
results.

2. Pseudo-Distance Map

In our previous work [4], we proposed a pseudo-distance
map for extracting skeletons from gray-scale images with-
out region segmentation or edge detection. In this subsec-
tion, we briefly introduce how to compute a PDM from a
given ESE.

2.1. One dimensional formulation

We begin by introducing an energy functional that is min-
imized to obtain a PDM in one dimension. Assuming that
an ESF v(z) is given, which ranges from O to 1 and mono-
tonically increases as an edge at x gets stronger, the func-
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tional is given by

BN = [avlf? + £+ 0= fur)+ 8le— 12 e,

(4) (8)

ey
where «, 3, a, and b are positive constants and f is the
PDM to be computed. The functional works as follows: If
v is small, the minimization of £ will be dominated by the
term (B), which means that the slope of f will approacha
or —a. If v is large, the term (A) will also affect the min-
imization of E and the constraints on f will work; that is,
the magnitudes of f and f, should become zero and f;,
should approach the positive constant b. These constraints
make f have local minima of nearly zero at the positions
where v is large. Therefore, the overall shape of f will
become similar to that of an EDM after the minimization
of E.

The function f that minimizes the functional E can be
computed by the variational method if the initial form of
f is appropriately given. Note that f;, in Equation (1)
causes the fourth-order derivative of f in the correspond-
ing PDE, which tends to make the PDE noise-sensitive.
To avoid the use of f.,, we introduce a new function g,
which approximates f,, and incorporate it with Equation

1):
E(f.0) = / ol f? + f2 + (b — ga)] + Bla® — 2

+ (9- fo)?da. )

Equation (2) gives rise to two PDEs

fo = o|(vfz)z ~ vf] +2Bf2z(3f2 — a®)
+  (fez = 92), 3)
gt = a[(vgz)z - bvz] + (fz - g) 4

We implemented the above PDEs using central finite-
difference approximations and solved them with the initial
value of f setto 1l — v.

2.2. Extension to two dimensions

The extension of Equation (2) to two dimensions is
straightforward:

Blfiah) = [aolf?+ 72+ £+ 6 0o)”
1

+ E(gy + hz)2 +(b— hy)z]

+ B —|IVI??

+ (9-fo)* + (A= fy)* dzdy, (5
where

g= fz and h= f,. 6)

Consequently,

1
Jzz = 9z, fyy = hy, and foy = 'é(gy"'h:'.)' Q)

The corresponding PDEs are

fo = a(V-uVf-vf)

+ 2B[(IVSI? - a®)V2 f

+ 2f2foa+2fufyfay + 2 )]

+ (Vif—gz—hy), ®
g = af2[v(gz — bz + [v(gy + hs)ly}

+ 2(fz —9), )
he = a{[u(gy + hy)le + 2[v(hy - b)]y}

+ 2(fy—h). (10)

To speed up the convergence and avoid falling into the
local extrema, we add a new term y¢V2 f to Equation (8),
where ¢ is given by

1 if {f <e} or {|det(H)| < e,
¢ = trace(H) > e3,v < €4} (1
0 otherwise,

where e; < 0,¢3 > 0, €3 > 0, €4 > 0, and their absolute
values are very small. The matrix H is a Hessian matrix
of f, which is given by

H= l: fzz fzy ] ~ ,: gz %(gy+hz) .
fay  fuy 3(9y + hz) by

12)
During the iterative computation of f, the new term acti-
vates only when f(z,y) has a negative value at (z,y) or
has a valley shape (i.e., local minimum) where v(z,y) is
very small. This term makes f escape from the two cases
by smoothing it out where they occur. Note that the two
eigenvalues A; and A2 (JA1] < |Az|) of the Hessian matrix
of f(z,y) correspond respectively to the minimum and
maximum second-order directional derivatives (i.e., cur-
vatures) of f at (x,y). Therefore, at the valleys of f, the
following condition is usually satisfied:

det(H) = A1-A2 = 0 and trace(H) = A\+X2 = A2 > 0.
V - (13
At first glance, our method seems to involve many pa-
rameters that need to be adjusted. However, considering
the role of each parameter, one can see that the parame-
ters v, €1, €2, €3, €4, a, and b are independent of the given
ESFs. Therefore, once the parameter values selected are
proven to be suitable for convergence, they are also suit-
able for other ESFs. Note that just as in the case of the
ESF, we can control the smoothness of the resulting PDM
by adjusting o and 3. As o/ gets smaller, the more the
details of the PDM are smoothed out.

3. Robust Image Segmentation Based
on a Pseudo-Distance Map

In this section, we introduce the overall procedure of
our region segmentation method together with our new
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region-merging criterion. The procedure consists of the
following four steps:

1. An ESF is computed from an input gray-scale image
using the Ambrosio and Tortorelli’s method [1].

2. A PDM is computed from the ESF by numerically
solving the PDEs introduced in Section 2.

3. An initial region segmentation result is obtained by
applying the watershed transformation to the inverted
PDM. We used Vincent and Soille’s watershed algo-
rithm [5].

4. Region-merging is carried out with our new merging
criterion.

For region-merging, we developed a new dissimilarity
function appropriately combining the edge strength and
region intensity information. Let R; be the set of pixels
belonging to a region %, and let I'; and I';; represent the
set of boundary pixels of the region ¢ and the set of pixels
belonging to the common boundary between the regions
and j, respectively. If the two regions ¢ and j are adjacent
to each other and ||R;|| < ||R;{|, where || R|| represents the
cardinality of a set R, the proposed function measuring the
dissimilarity between the regions ¢ and j is given by

1.7) = ”_Fﬂ_u . _M AU .
s6:3) = et B (1= g i e

wher® E(R) and p(R) are the average edge strength and
intensity values of pixels belonging to R, and x is a scaling
constant.

4. Experimental Results

To show the usefulness of our method, we compared
the performance of our method with that of the method
proposed by Haris et al. [3). Their method consists
of four stages. The first stage is the reduction of the
noise corrupting the original image while preserving its
meaningful structures, which is based on the homogene-
ity/heterogeneity assumption for the image regions. At
the second stage, Gaussian gradients are calculated and
their magnitudes below a certain threshold are set to zero.
At the next stage, the resulting thresholded gradient im-
age is fed into the watershed algorithm, which produces
an initial segmentation result. At the final stage, an it-
erative region-merging algorithm is applied to the water-
shed regions to produce a final segmentation resuit. For a
fair comparison between the two methods, we applied the
same noise reduction technique proposed by Haris et al.
to an input image before obtaining the ESF or Gaussian
gradients. We also used the same watershed algorithm
proposed by Vincent and Soille [5] and the same dissimi-
larity function of Equation (14), where we normalized the
gradient magnitudes to use the dissimilarity function in

Figure 1: Segmentation results of the gradient- and PDM-based
methods. (a) Original image. (b) Noise-reduced image. (c) In-
verted PDM obtained from the ESF of (b). (d) Watersheds of
gradients (2531 regions). (¢) Watersheds of thresholded gradi-
ents (1639 regions). (f) Watersheds of the inverted PDM (372
regions). (g) Region-merging result of (). (h) Region-merging
result of (f).

the Haris et al. method. Therefore, the biggest difference
between the methods is the input to the watershed trans-

4 formation. In our method, the PDM is used instead of the
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Figure 2: Other segmentation results of the gradient- and PDM-
based methods. (a) Original image. (b) Noise-reduced image.
(c) ESF obtained from (b). (d) Inverted PDM obtained from (c).
(e) Final segmentation result based on thresholded gradients. (f)
Final segmentation result based on the PDM.

thresholded gradient image.

From the results of Figure 1, one can see that although
the Haris ef al. method significantly reduces the number
of initial partitions, it still produces a large number of par-
titions when compared to our method. In addition, the
final segmentation results show that the proposed PDM-
based segmentation method provides region boundaries
that are less noisy and more accurate than the method us-
ing the thresholded gradients.

Figure 2 shows other segmentation results of the gra-
dient and the PDM-based methods. The ESF of Figure
2(c) was obtained by Ambrosio and Tortorelli’s method,

and the PDM of Figure 2(d) was obtained from the ESF
with & = 0.6 and § = 1.0. The final segmentation results
of Figures 2(e) and (f) were obtained by iteratively merg-
ing adjacent regions whose dissimilarity is less than 15.0.
Comparing the two figures, one can easily recognize that
the proposed method produced a more accurate and less
noisy segmentation result. Note that the part pointed by
an arrow in Figure 2(f) clearly shows that our method can
provide well-completed region boundaries even if some
parts of the boundary have nearly zero edge strength val-
ues.

5. Conclusions

In this paper, we proposed a new region segmenta-
tion method based on the watershed transformation of a
pseudo-distance map. Since the PDM is a regularized
version of a Euclidean distance map and is directly com-
puted from an edge-strength function, its watershed trans-
formation usually produces more reliable and less noisy
initial segmentation results than the gradient- or EDM-
based methods while preserving the useful property of
the EDM-based method. We also proposed an efficient
region-merging criterion based on edge strengths and re-
gion intensities. Through several experiments, we showed
that the proposed region-merging criterion together with
the PDM-based method yielded final segmentation results
better than the conventional methods.

The main drawback of our method is that it requires a
long computation time. Although this drawback cin be
overcome by computing the solutions of the PDEs in par-
allel, we plan to develop a computationally more efficient
algorithm in the future.
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