• 제목/요약/키워드: Water-using facilities

검색결과 849건 처리시간 0.03초

Estimation of Optimum Capacity for Rainwater Storage Facilities based on Mass Balance and Economic Analysis (Mass-balance 및 경제성 분석에 의한 빗물저류시설 적정 규모 산정)

  • Kim, Youngmin;Lee, Sangho;Lee, Jung-Hun;Kim, Ree-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • 제22권2호
    • /
    • pp.233-238
    • /
    • 2008
  • Recently, rainwater harvesting facilities have increasingly constructed mainly in elementary schools and government buildings. Nevertheless, few methods are available for efficient planning and design of rainwater harvesting facilities by considering the weather conditions and purpose of rainwater management in each site, which may lead to a construction of uneconomic facilities. The current method estimates the size of rainwater storage tank by multiplying the size of building or plottage with a certain ratio and has many limitations. In this study, we first developed a method for planning and design of rainwater storage facilities using $Rainstock^{TM}$ model, which is based on mass balance, and economic analysis. Then, the model was applied for the design of a rainwater harvesting facility in a building with the catchment area of $1,000m^2$. The model calculation indicated that the economic feasibility of rainwater harvesting depends on not only the size of storage tank but also the water usage rate. When the water usage rate is $1m^3/day$, the rainwater harvesting facility is not cost-effective regardless of the size of the storage tank. With increasing the water usage rate, the economical efficiency of the facility was improved for a specific size of the storage tank. Based on the model calculation, the optimum tank sizes for $5m^3/day$ and $10m^3/day$ of water usage rates were $24m^3$ and $57m^3$, respectively. It is expected that the model is useful for optimization of rainwater storage facilities in planning and designing steps.

A Study on the Pump System Design Optimization for Regional Water Supply Facilities (광역상수도용 펌프의 규격 최적결정방법에 관한 연구)

  • Roh, Hyung-woon;Suh, Sang-Ho;Kim, Kyung-Yup;Kim, Sung-Won;Kim, Il-Soo;Park, Jong-Moon;Park, HeeKyung;Park, No-Suk;Lee, Bong-Joo;Lee, Jeung-Woo;Lee, Young-Bum;Lee, Young-Ho;Kim, Sang-Gyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.159-164
    • /
    • 2001
  • An extensive range of pumping facilities are employed in the regional water supply system in metropolitan areas, and optimization and the systematic combination of the pump facilities have direct bearing on the stability and economy of the water supply system concerned. These systems must be able to guarantee stability, efficiency and offer high reliability. Preparation of metropolitan area regional water supply system construction project must include a basic plan which takes into account the suitability of pumping facilities to be used, the environment in which facilities will be installed, man-power requirements and basic operational and management policies. This paper contains over-all analysis of the management of metropolitan area regional water supply systems and highlights the cause of Inefficiency and energy waste and puts forward a remedial plan of action. In addition, pump/motor specification programs were developed using Visual Basic to assist selection of the same.

  • PDF

Research on the Development of Sensing Data and Water Unit Factor Application of Urban Water Demand (센싱데이터와 원단위 산정을 활용한 도시용수 사용량 산정기법에 관한 연구)

  • Kim, Dong-Moon;Kim, Seong-Hoon;Lee, Si-Hyoung;Kim, Eui-Myoung;Park, Jae-Kook
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 한국측량학회 2010년 춘계학술발표회 논문집
    • /
    • pp.347-348
    • /
    • 2010
  • The purpose of this study lies in presenting a methodology to estimate the amount of water to be used in the future by grasping the state of water use in real time based on a statistical analysis using water unit factor application of urban water demand of existing housing, education facilities, and industrial water as well as sensing data by water type. The results of the study would provide in real time the state of water use per water type and the amount of water to be consumed in the future in order to provide basic data for decision-making when planning and managing water facilities based on GIS at times water lacks.

  • PDF

Effects of controlling plans of non-point pollutant sources in dongcheon of Ulsan (울산시 동천 비점오염원 제어효과)

  • Kang, Ho Seon;Cho, Hong Je
    • Journal of Korean Society of Water and Wastewater
    • /
    • 제28권3호
    • /
    • pp.265-276
    • /
    • 2014
  • In this study, we suggested 4 plans to reduce non-point pollutant sources in Dongcheon and analyzed their controlling effects by water quality modeling, XP-SWMM. To do this we identified the influx of non-point pollutant sources to the initial rainwater through the water quality survey in the river and analyzed the causes of them at major locations, and suggested 4 kinds of plans reducing non-point pollutant sources. Plans reducing the non-point pollutant sources through cleaning the industrial road around the river(plan A), through a separate treatment facilities like the gutter(plan B), through installing treatement facilities(plan C), or through combing plan B and C(plan D) were analyzed using XP-SWMM model. The analysis showed that plan A, B, C and D reduced non-point pollutant sources average 21.7 %, 24.7 %, 49.3 %, 56.7 % respectively. Therefore, the water quality pollution in Dongcheon due to the influx of non-point pollutant sources is considered to be reduced effectively though cleaning the road, installed at the exits of paddy or factory basins, invasion type facilities or equipment-type facilities.

Network Modeling of Paddy Irrigation System using ArcHydro GIS (ArcHydro를 이용한 GIS기반의 관개시스템 네트워크 모델링)

  • Park, Geun-Ae;Park, Min-Ji;Jang, Jung-Seok;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.323-327
    • /
    • 2006
  • During the past decades in South Korea, there have been several projects to reduce water demand and save water for paddy irrigation system by automation. This is called as intensive water management system by telemetering of paddy ponding depth and canal water level and telecontrol of water supply facilities. This study suggests a method of constructing topology-based irrigation network system using GIS tools. For the network modeling, a typical agricultural watershed included reservoirs, irrigation and drainage canals, pumping stations was selected. ArcHydro tools composed of edge, junction, waterbody and watershed were used to construct hydro-network. ArcHydro Model was then designed and the network was successfully built using the HydroID. Visualization using ArcHydro tools could display table property of each object. ArcHydro Model was linked to Agricultural Water Demamd and Supply Estimation System (AWDS) which developed by Korea Rural Community and Agriculture Corporation (KRC) to extract information of the study area. And menu of supply facilities information, demand analysis and supply analysis constructed for information acquisition and visualization of acquired informations.

  • PDF

Construction of Tap Water Management System for Subset Area of Hamyang Gun Using GIS (GIS를 이용한 함양군 일부지역의 상수도 관리 시스템 구축)

  • 김재명;안기원;신석효;김상철
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 한국측량학회 2003년도 추계학술발표회 논문집
    • /
    • pp.347-352
    • /
    • 2003
  • This study attempts to develop the management and control system of water pipe on the footing of database builded by the research on the pipe of water supply equipped over 48.809km within district of Hamyang-up by Hamyang-Gun, and to apply it to the work of self-governing body. And, since the structure and equipment of facilities of underground water supply pipe ate so complex, the maintenance and management of function of facilities are needed for long-term. This study has the purpose to build the database per self-governing body which can be connected with the future NGIS project, and to promote the efficiency of management and control of facilities and equipment.

  • PDF

Real-time Water Supply Facilities Monitoring System based on the USN (USN 기반의 실시간 수도설비 모니터링 시스템)

  • Kim, Yong-Tae;Yoo, Neung-Hwan;Park, Gil-Cheol;Kim, Seok-Soo;Kim, Tai-Hoon;Lee, Sang-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제11권6호
    • /
    • pp.1207-1213
    • /
    • 2007
  • This paper has researched water supply facilities management using real-time water utility monitoring system based on USN(Ubiquitous Sensor Network) which is consisted of wireless sensors transferring waterworks facilities md treatment information about a valve-room and flowmeter-room of water supply installation. In the manholes, it was installed with flowmeter, pressure sensors, vibration sensors, Co-sensors, and hydro-thermograph sensors. These measurement values which are received by PDA are used for facilities operation on the spot safely and conveniently. It has also provided safe installation management via CDMA(Code Division Multiple Access) network which transfers data to remote servers to monitoring at a distance place. With safety management system of water supply facilities on USN technology convenience and safety is increased in real situation, and it is expected that we can supply clean water to people as much safer and more effective water supply installation management.

Statistical Analysis of Chlorine Residual in Korean Drinking Water (국내정수장의 잔류염소농도에 대한 조사연구)

  • Sohn, Jinsik;Kang, Hyosoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • 제20권2호
    • /
    • pp.281-287
    • /
    • 2006
  • Maintaining adequate chlorine residual is crucial in water treatment facilities, Treatment technique, newly promulgated regulation, requires sufficient disinfection in order to control more resistant microorganisms such as Viruses and Giardia lamblia. Each water treatment plant should report various water qualities including chlorine residual and disinfection by-products, thus plenty of data has been generated. Even though statistical analysis using these data are forced to investigate the status and effect of water qualities in water facilities very few researches have been performed in korea. This study performed statistical analysis of chlorine residual during three years in Korean drinking water. The average chlorine residual concentrations were 0.701mg/L, 0.738mg/L, 0.763mg/L in 2002, 2003, 2004, respectively. Monthly variations of chlorine residual was not significant. ANOVA result showed that yearly variance of chlorine residual is different in only less than $5000m^3/day$ of water treatment capacity. The statistical analysis can help government to establish new regulation with scientific basis.

Characterization of Legionella Isolated from the Water System at Public Facilities in Chungcheongnam-do Province (충남지역 다중이용시설의 환경수계에서 분리한 레지오넬라균의 특성 분석)

  • Cheon, Younghee;Lee, Hyunah;Nam, Hae-Sung;Choi, Jihye;Lee, Dayeon;Ko, Young-Eun;Park, Jongjin;Lee, Miyoung;Park, Junhyuk
    • Journal of Environmental Health Sciences
    • /
    • 제47권5호
    • /
    • pp.472-478
    • /
    • 2021
  • Background: The Legionella case detection and notification rate have increased in public artificial water environments where people visit, including large buildings, public baths, and hospitals. Objectives: In this study, the distribution of Legionella and its epidemiologic characteristics were analyzed in the water systems of public facilities in Chungcheongnam-do Province in South Korea. Methods: Culture and PCR analysis were performed on 2,991 environmental water system samples collected from 2017 to 2019, and associations with year, facilities, seasons, and temperature of water system were statistically analyzed by using R-Studio for Windows. Descriptive data was compared using chi-square tests and independent t-tests. Results: The detection rate of Legionella increased from 3.1% in 2017 to 10.3% in 2019, appearing most frequently in the order of public baths, large-scale buildings, hospitals, and apartments. It was detected mainly in summer from June to August, over 1.0×103 CFU/L on average in 133 cases (66.5%). Lots of germs were detected in bathtub water, cooling tower water, and warm water (p<0.001), and it was detected at higher rates in the cities where multipurpose facilities were concentrated than in rural areas (p=0.018). Conclusions: This study suggests that continuous monitoring and control are required for Legionella in the water system environment of high risk facilities. Moreover, these results will be helpful to prepare efficient management plans to prevent the Legionellosis that occurs in Chungcheongnam-do Province.

Analysis of Water Cycle Effect by Plan of LID-decentralized Rainwater Management Using SWMM-LID Model in a Low-carbon Green Village (SWMM-LID를 이용한 저탄소 녹색마을의 LID-분산형 빗물관리 계획에 따른 물순환 효과 분석)

  • Lee, Jung-Min;Hyun, Kyoung-Hak;Lee, Yun-Sang;Kim, Jung-Gon;Park, Yong-Boo;Choi, Jong-Soo
    • Land and Housing Review
    • /
    • 제2권4호
    • /
    • pp.503-507
    • /
    • 2011
  • There was a plan to develop a low-carbon green village(approximately $400,000m^2$) in A city, a new town. Restoration of water cycle is essential for creation of the low-carbon green village. Therefore, installation plan of LID-decentralized rainwater management facilities for natural water cycle was established for creation of the low-carbon green village. Analyses on effect of the water cycle were performed in conditions of before, after developing the low-carbon green village and after installing the LID facilities(rain garden, constructed wetland, rainwater harvesting facility, etc.) using SWMM-LID model developed by EPA. Due to the characteristic of permeable area before development and significant green spaces after development, installation plan of LID facilities to restore the water cycle did not show an obvious effect. However, potential of the hydrological cycle could be seen by the installation of the LID facilities.