• Title/Summary/Keyword: Water-treatment sludge

Search Result 628, Processing Time 0.025 seconds

Solubilization of Sewage Sludge by Microwave Pretreatment and Elutriated Acid Fermentation (Microwave를 이용한 하수슬러지의 전처리 특성 및 회분식 세정산발효를 이용한 슬러지 가용화)

  • Lee, Won-Sic;Hong, Seung-Mo;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1130-1136
    • /
    • 2006
  • This work elucidates the effects of pretreatment of the sewage sludge from wastewater treatment plant by microwave irradiation on elutriated acid fermentation. These experiments typically fell into two process; pretreatment as microwave irradiation and elutriated acid fermentation for hydrolysis and acidification as main process of primary sludge. The results of maximum solubilization rate of B, D primary and secondary sludge were 0.042, 0.086 and 0.15 gSCODprod./gICODin and the optimum irradiation time of microwave on 2,450 MHz and 900 W were 5 min. for primary sludge and 7 min. for secondary sludge. From batch tests on elutriated acid fermentation that was used the pretreated primary sludge as microwave, the optimum pH and HRT (hydraulic retention time) were 7 and 5 days at $35^{\circ}C$ condition.

Relation between sludge properties and filterability in MBR: Under infinite SRT

  • Zhang, Haifeng;Wang, Bing;Yu, Haihuan;Zhang, Lanhe;Song, Lianfa
    • Membrane and Water Treatment
    • /
    • v.6 no.6
    • /
    • pp.501-512
    • /
    • 2015
  • A laboratory-scale submerged membrane bioreactor (MBR) was continuously operated for 100 d at an infinite sludge retention time (SRT) with the aim of identifying possible relation between the filterability of mixed liquor and sludge properties, such as extracellular polymeric substances (EPS), soluble microbial products (SMP), viscosity of mixed liquor, zeta potential of flocs and particle size distributions (PSD). Research results confirmed that MBR can operate with a complete sludge retention ensuring good treatment performances for COD and $NH_3-N$. However, the long term operation (about 40 d) of MBR with no sludge discharge had a negative influence on sludge filterability, and an increase in membrane fouling rates with the time was observed. There as a strong correlation between the sludge filterability and the fouling rate. Among the different sludge properties parameters, the concentration SMP and EPS had a more closely correlation with the sludge filterability. The concentrations of SMP, especially SMP with MW above 10 kDa, had a strong direct correlation to the filterability of mixed sludge. The protein fractions in EPS were biodegradable and available for microorganism metabolism after about 60 days, and the carbohydrates in EPS had a significantly negative effect on sludge filterability in MBR at an infinite SRT.

Nanowastes treatment in environmental media

  • Kim, Younghun
    • Environmental Analysis Health and Toxicology
    • /
    • v.29
    • /
    • pp.15.1-15.7
    • /
    • 2014
  • Objectives This paper tried to review a recent research trend for the environmental exposure of engineered nanomaterials (ENMs) and its removal efficiency in the nanowaste treatment plants. Methods The studies on the predicted environmental concentrations (PEC) of ENMs obtained by exposure modeling and treatment (or removal) efficiency in nanowaste treatment facilities, such as wastewater treatment plant (WTP) and waste incineration plant (WIP) were investigated. The studies on the landfill of nanowastes also were investigated. Results The Swiss Federal Laboratories for Materials Science and Technology group has led the way in developing methods for estimating ENM production and emissions. The PEC values are available for surface water, wastewater treatment plant effluents, biosolids, sediments, soils, and air. Based on the PEC modeling, the major routes for the environmental exposure of the ENMs were found as WTP effluents/sludge. The ENMs entered in the WTP were 90-99% removed and accumulated in the activated sludge and sludge cake. Additionally, the waste ash released from the WIP contain ENMs. Ultimately, landfills are the likely final destination of the disposed sludge or discarded ENMs products. Conclusions Although the removal efficiency of the ENMs using nanowaste treatment facilities is acceptable, the ENMs were accumulated on the sludge and then finally moved to the landfill. Therefore, the monitoring for the ENMs in the environment where the WTP effluent is discharged or biomass disposed is required to increase our knowledge on the fate and transport of the ENMs and to prevent the unintentional exposure (release) in the environment.

Technology Trend on the Increase of Biogas Production and Sludge Reduction in Wastewater Treatment Plants: Sludge Pre-treatment Techniques (하수처리장 바이오가스 생산 증대와 슬러지 감량화에 관한 기술분석: 슬러지 전처리 기술)

  • Cho, Il Hyoung;Ko, In Beom;Kim, Ji Tae
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.413-424
    • /
    • 2014
  • The potential of using the biogas as energy source has long been widely recognised and current techniques are being developed to upgrade the technical quality and to enhance energy efficiency. The objective of this paper is to present efficient and effective pre-treatment methods of increasing the amount of produced biogas in anaerobic digestion of activated sludge treatment process. The paper also presents a review of the effect on biogas production between pre-treated and raw sludge, and also put forward the advantages and disadvantages of each pre-treatment method.

Influences of Detention Time, Particle Size Distribution, and Filter Medium on Waterworks Sludges Dewatering (체류시간, 입도분포 및 여재가 정수 슬러지의 탈수에 미치는 영향)

  • Kim, Kwang-Soo;Lee, Jae-Bok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.1
    • /
    • pp.121-128
    • /
    • 2009
  • Objectives of this study were to investigate influencing factors of detention time, particle size distribution, and filter medium characteristics for waterworks sludge dewatering. The stepped pressure filtration was carried out with lab scale apparatus and the filter press pilot test for dewatering was conducted at the water treatment plant. Effects of filter medium and polymer dose were examined through observing water content and dewatering velocity and cyclic dewatering rate with filter press pilot test. Relationships among detention time, particle size distribution and filtration resistance were analyzed. Prolongation of sludge detention time was found to cause blinding phenomenon in cake and filter medium and to decrease dewatering process efficiency. The average specific resistance increased according to detention time. In pilot test of dewatering for thickened sludge with Nylon Multi-NY840D and Nylon Mono-100% filter media, dewatering velocities were 0.92 and $0.93kg\;DS/m^2{\cdot}hr$ according to 0.1% polymer dose of dried solids weight base. And cyclic dewatering rates were 2.45 and $2.50kg\;DS/m^2{\cdot}cycle$ cycle for the Nylon Multi-NY840D and Nylon Mono-100% media. Dewatering velocity of polymer dosed sludge was observed to be higher than that of non-polymer sludge.

Synthesis of Butenes through Butanol Dehydration over Catalyst Prepared from Water Treatment Sludge (정수 슬러지로부터 제조된 촉매 상에서 부탄올 탈수반응을 통한 부텐 제조)

  • Kim, Goun;Bae, Junghyun;Choi, Hyeonhee;Lee, Choul-Ho;Jeon, Jong-Ki
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.121-126
    • /
    • 2015
  • The objective of this study is to evaluate the catalytic potential of the porous material prepared from water treatment sludge. The textural properties of the catalyst were studied using $N_2$ adsorption and desorption isotherms, scanning electron microscope, and X-ray diffraction. The pellet-type catalyst prepared using water treatment sludge is determined to be a material that contains mesopores as well as micropores. The specific surface area of the catalyst is $157m^2/g$. Acidic characteristics of the catalyst are analyzed by temperature-programmed desorption of ammonia and infrared spectroscopy of adsorbed pyridine. 2-Butanol dehydration reaction was carried out in a fixed bed catalytic reactor. Yields of 1-butene, trans-2-butene, and cis-2-butene at $350^{\circ}C$ were 25.6 wt%, 19.2 wt%, and 29.9 wt%, respectively. This catalytic activity of the catalyst based on water treatment sludge in 2-butanol dehydration is due to the acid sites composed of Bronsted acid sites and Lewis acid sites. It was confirmed that the catalyst based on water treatment sludge can be utilized to produce $C_4$ olefin through butanol dehydration.

Synthesis and Characterization of Zeolite Using Water Treatment Sludge (정수슬러지를 이용한 제올라이트의 합성 및 특성연구)

  • Ko, Hyun Jin;Ko, Yong Sig
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.263-269
    • /
    • 2020
  • Zeolite was synthesized hydrothermally using the water-treatment sludge, and the effects of various synthesis parameters like reaction temperature, reaction time, and Na2O/SiO2 molar ratio on the crystallization of zeolite were investigated. Crystal structure, physical property, and thermal stability of zeolite crystals were characterized by X-ray powder diffraction, FTIR spectroscopy, BET nitrogen adsorption, and TGA measurements. The removal efficiencies of nitrogen in ammonia, heavy metal ions, and TOC were calculated to evaluate zeolite's adsorption capacity. The primary chemical composition of water-treatment sludge was 28.79% Al2O3 and 27.06% SiO2. The zeolites were synthesized by merely employing the water-treatment sludge as silica and alumina sources without additional chemicals. Zeolite crystals synthesized through the water-treatment sludge were confirmed as an A-type zeolite structure. Zeolite A had the highest crystallinity obtained from a gel with the molar composition 2.1Na2O-Al2O3-1.6SiO2-65H2O after 5 h at a temperature of 90 ℃. The specific surface area of zeolite obtained was 55 ㎡ g-1, which was higher than commercial zeolite A. The removal efficiency of nitrogen in ammonia was 68% after 3 h of reaction time, while the removal efficiencies of Pb2+ and Cd2+ ions were 99.1% and 99.3%, respectively. These results indicate active ion exchange between Pb2+ or Cd2+ ion and Na+ ion in the zeolite framework. The adsorption experiments on the different zeolite addition conditions were performed for 3 h with 300 ppm humic acid. Based on the results, TOC's highest efficiency was 83% when 5 g of zeolite was added.

Treatment Characteristics of Paper-mill Wastewater Using Pure Oxygen Activated Sludge Process (순산소 활성오니 공정을 이용한 제지폐수의 처리특성)

  • Kim, Sung Soon;Chung, Tai Hak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.4
    • /
    • pp.27-34
    • /
    • 1999
  • An experimental study on improvement of the paper-mill wastewater treatment using the pure oxygen activated sludge process was conducted. The effects of hydraulic retention time(HRT) and BOD loading on organic removal efficiency were investigated. The BOD removal efficiencies were above 90% under all examined HRTs except for HRT of 3 hours. The increase of HRT from 3 hours to 6 hours, and to 12 hours significantly improved BOD and COD removal efficiencies, respectively. However, additional increase of HRT did not affect organic removal efficiency. F/M ratio change at fixed HRT did not affect organic removal efficiency. However, F/M ratio investigated in this study(0.11~1.98kgBOD/kgMLVSS/day) was 5 times greater in maximum than that of conventional activated sludge process, which implies that pure oxygen activated sludge process can treat wastewater with high organic strength. Under the same HRT, the volumetric BOD loading change cause no effect on organic removal efficiency also.

  • PDF

Improvement of treatment efficiency for sanitary treatment facilities by process modifications (분뇨처리장의 공정개선에 의한 처리효율 향상에 관한 연구)

  • Lee, Chan Won;Kim, Seung Hyeon;Kim, Chang Su;Mun, Seong Won;Jeon, Hong Pyo;Yun, Jong Seop
    • Journal of Environmental Science International
    • /
    • v.13 no.6
    • /
    • pp.571-579
    • /
    • 2004
  • There is a need to improve the efficiency of the existing sanitary treatment facilities, because the effluent standard becomes more stricter and septic sludge increased. Thus, operating processes of sanitary treatment system in M city changed with installation of additional facilities. Process modifications were as follows: Dilution water was added to the next process after primary aeration tank. Some secondary sedimentation sludge was recycled to primary aerator so that most of the organics were stabilized in primary aeration tank under automatic control of dissolved oxygen. The line of effluent from dewatering process flowing to the activated sludge tank was changed to the primary aerator. The primary sedimentation sludge line was linked to a thickener. Polymer was added to the activated sludge tank. The effluent of primary aerator and aerobic digester was recycled from the 5th to the 1st sector. As consequencies of above process modifications, the improvement of removal efficiency was achieved as BOD 54%, COD 42%, SS 61%, T-N 39%, and T-P 12%, respectively.

Development of Ultrasonic Multi-Beam Sludge Meter For Effluent Facilities Automation (정수장에서 배출수 공정 자동화를 위한 초음파 다중빔 슬러지 농도계 개발)

  • Jang, Sang-Bok;Hong, Sung-Taek;Chun, Myung-Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2313-2321
    • /
    • 2014
  • A concentration meter is widely used at purification plants, sewage treatment plants and waste water treatment plants to sort and transfer high concentration sludge and to control the amount of chemical input. This study has been prepared for improving efficiency of operation on sludge processes and to establish a basic for factory automation by accuracy improvement and problem solution of sludge concentration meter. The concentration meter's accuracy and stability is improved by applying multi-beam sensors and minimum deviation linear average filtering. Furthermore maintenance without cut-off of water in sludge operation is possible by detachable sensors. The performance of multi-beam concentration meter has been variously verified by the pilot plant experiment.