Browse > Article
http://dx.doi.org/10.9713/kcer.2014.52.4.413

Technology Trend on the Increase of Biogas Production and Sludge Reduction in Wastewater Treatment Plants: Sludge Pre-treatment Techniques  

Cho, Il Hyoung (Department of Environmental and Energy Engineering, R&D Center for Advanced Technology of Wastewater Treatment and Reuse, Kyonggi University)
Ko, In Beom (KOLON Water & Energy CO., LTD.)
Kim, Ji Tae (Department of Environmental and Energy Engineering, R&D Center for Advanced Technology of Wastewater Treatment and Reuse, Kyonggi University)
Publication Information
Korean Chemical Engineering Research / v.52, no.4, 2014 , pp. 413-424 More about this Journal
Abstract
The potential of using the biogas as energy source has long been widely recognised and current techniques are being developed to upgrade the technical quality and to enhance energy efficiency. The objective of this paper is to present efficient and effective pre-treatment methods of increasing the amount of produced biogas in anaerobic digestion of activated sludge treatment process. The paper also presents a review of the effect on biogas production between pre-treated and raw sludge, and also put forward the advantages and disadvantages of each pre-treatment method.
Keywords
Biogas; Pre-treatment; Anaerobic Digestion; Sludge;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Shehu, M. S., Manan, Z. A. and Wan Alwi, S. R., "Optimization of Thermo-alkaline Disintegration of Sewage Sludge for Enhanced Biogas Yield," Bioresour. Technol., 114, 69-74(2012).   DOI   ScienceOn
2 Cui, R. and Jahng, D. J., "Nitrogen Control in AO Process with Recirculation of Solubilized Excess Sludge," Water Res., 38, 1159-1172(2004).   DOI   ScienceOn
3 Pike Research, Global Biogas Market to Nearly Double in Size to $33 Billion by 2022(2012).
4 Patricia Sinicropi, J. D., "Biogas Production at Wastewater Treatment Facilities," Congressional Briefing-May 16, National Association of Clean Water Agencies(2012).
5 AgSTAR, AD 101 Biogas recovery systems. US EPA. http://www.epa.gov/agstar/anaerobic/ad101/index.html. Accessed 1 May 2011.
6 Renewable Waste INTELLIGENCE, Business Analysis of Anaerobic Digestion in the USA March(2013).
7 Global Intelligence Alliance (GIA), How to Profit from Biogas Market Developments
8 The U.S. Environmental Protection Agency (EPA), Opportunities for Combined Heat and Power at Wastewater Treatment Facilities: Market Analysis and Lessons from the Field U.S. Environmental Protection Agency Combined Heat and Power Partnership, October 2011.
9 Tchobanoglous, G. and Leverenz, H., "Impacts of New Concepts and Technology on the Energy Sustainability of Wastewater Management," Presented at Conference on Climate Change, Sustainable Development and Renewable Resources in Greece. October 17, 2009.
10 Water Environment Research Foundation. Exploratory Team Report. Energy Management(2011).
11 Karakashev, A. D., Batstone, D. J., Plugge, C. M. and Stams, A. J. M., "Biomethanation and Its Potential Methods," Enzymol., 494, 329-353(2011).
12 California Environmental Protection Agency, "Current Anaerobic Digestion Technologies Used for Treatment of Municipal Organic Solid Waste," Contractor's Report(2008).
13 Nichols, C. E., "Overview of Anaerobic Digestion Technologies in Europe," BioCycle, 45(1), 47-53(2004).
14 Poo, K., Im, J., Ko, J., Kim, Y., Woo, H. and Kim, C., "Control and Nitrogen Load Estimation of Aerobic Stage in Full-scale Sequencing Batch Reactor to Treat Strong Nitrogen Swine Wastewater," Korean J. Chem. Eng., 22(5), 666-670(2005).   과학기술학회마을   DOI   ScienceOn
15 Moller, J., Boldrin, A. and Christensen, T. H., "Anaerobic Digestion and Digestate Use: Accounting of Greenhouse Gases and Global Warming Contribution," Waste Manage. Res, 27, 813-824(2009).   DOI
16 Yuan, S., Zheng, Z., Mu, Y., Yu, X. and Zhao, Y., " Use of Gamma Irradiation Pretreatment for Enhancement of Anaerobic Digestibility of Sewage Sludge," Frontier Environ Sci Eng China., 2(2), 247-250 (2008).   DOI
17 Stephenson, R., Rabinowitz, B., Laliberte, S. and Elson, P., "Teaching An Old Digester New Tricks: Full-scale Demonstration of the Micro Sludge Process to Liquefy Municipal WAS. In: WEF Proceedings of the Residuals and Biosolids Management Conference, Covington, KY(2005).
18 Liu, X., Liu, H., Chen, J., Du, G. and Chen, J., "Enhancement of Solubilization and Acidification of Waste Activated Sludge by Pretreatment," Waste Manage., 28, 2614-2622(2008).   DOI   ScienceOn
19 EurObserv'E. R., "The State of Renewable Energies in Europe - 2011 Edition," December, 56(2011).
20 Floris van Foreest, "Perspectives for Biogas in Europe," Oxford Institute for Energy Studies(2012).
21 Bodik, I., Sedlaeek, S., Kubaska, M. and Hutoan, M., "Biogas Production in Municipal Wastewater Treatment Plants - Current Status in EU with a Focus on the Slovak Republic," Chem. Biochem. Eng. Q., 25(3), 335-340(2011).
22 Strauch, S. and Fraunhofer UMSICHT, "Biogas Upgrading Technologies," June(2012).
23 Leibniz, L. B., "Institute for Agricultural Engineering, IEA Bioenergy Task 37," Country Report, Germany, September 2011.
24 Strauch, S., Krassowski, J. and Singhal, A., "Biomethane Guide for Decision Makers - Policy Guide on Biogas Injection into the Natural Gas Grid," Fraunhofer UMSICHT(2013).
25 Apul, O. G. and Sanin, F. D., "Ultrasonic Pretreatment and Subsequent Anaerobic Digestion Under Different Operational Conditions," Biores Technol., 101, 8984-8992(2010).   DOI   ScienceOn
26 Korean Ministry of Environment (KMOE), "The fact of biogas facilities using the waste biomass in 2009".
27 Cho, H. U., Park, S. K., Ha, J. H. and Park, J. M., "An Innovative Sewage Sludge Reduction by Using a Combined Mesophilic Anaerobic and Thermophilic Aerobic Process with Thermal Alkaline Treatment and Sludge Recirculation," J. Environ. Manage., 129, 274-282(2013).   DOI   ScienceOn
28 Onyeche, T., "Sewage Sludge as Source of Energy," In: Proceedings of the IWA specialized conference on sustainable sludge management: state-of-the-art, challenges and perspectives, Moscow, Russia, May, 235-241(2006).
29 Erden, G., Demir, O. and Filibeli, A., "Disintegration of Biolog-ical Sludge: Effect of Ozone Oxidation and Ultrasonic Treatment on Aerobic Digestibility," Biores Technol., 101, 8093-8098(2010).   DOI   ScienceOn
30 Perez-Elvira, SI., Fernandez-Polanc, F., Fernandez-Polanco, M., Rodriguez, P. and Rouge, P., "Hydrothermal Multivariable Approach. Full-scale Feasibility Study," Electron J Biotechnol., 11, 7-8(2008).
31 Li, H., Jin, Y. and Nie, Y., "Application of Alkaline Treatment for Sludge Decrement and Humic Acid Recovery," Biores Technol., 100, 6278-6283(2009).   DOI   ScienceOn
32 Ferrer, I., Serrano, E., Ponsa, S., Vazquez, F. and Font, X., "Enhancement of Thermophile Anaerobic Sludge Digestion by $70^{\circ}C$ Pretreatment: Energy Considerations," J. Residuals Sci. Technol., 6(1), 11-18(2009).
33 Kim, H. R., "Sludge Waste to Energy and Resources in Sewage and Wastewater Treatment Plants," Korean Organic Recycling Association, 2012(5), 31-50(2012).
34 Xu, G., Chen, S., Shi, J., Wang, S. and Zhu, G., "Combination Treatment of Ultrasound and Ozone for Improving Solubilization and Anaerobic Biodegradability of Waste Activated Sludge," J. Hazard. Mater., 180, 340-346(2010).   DOI   ScienceOn
35 Cho, S. K., Kim, D. H. and Shin, H. S., "Combined Pretreatments of Various (alkaline + ultrasound, alkaline + thermal alkaline + MW) Effect on Sewage Sludge Disintegration," 19th KKNN Symposium, 45, 22(2010).
36 Tanaka, S., Kobayashi, T., Kamiyama, K., Bildan, M., "Effects of Thermo-chemical Pretreatment on the Anaerobic Digestion of WAS.," Wat. Sci. Technol., 35(8), 209-215(1997).   DOI
37 Jin, Y., Li, H., Mahar, R. B., Wang, Z. and Nie, Y., "Combined Alkaline and Ultrasonic Pretreatment of Sludge Before Aerobic Digestion," J. Environ. Sci., 21, 279-284(2009).   DOI   ScienceOn
38 Rivard, C. J. and Nagle, N. J., "Pretreatment Technology for the Beneficial Reuse of Municipal Sewage Sludges," Appl Bioch Biotechnol, 57-58, 983-991(1996).   DOI   ScienceOn
39 Ayling, G. W. and Castrantas, H. M., "Waste Treatment with Hydrogen Peroxide," Chem Eng NY, 88, 79-82(1981).
40 Kim, T. H., Lee, S. R., Nam, Y. K., Yang, J., Park, C. and Lee, M., "Disintegration of Excess Activated Sludge by Hydrogen Eroxide Oxidation," Desalination, 246, 275-284(2009).   DOI   ScienceOn
41 Bougrier, C., Battimelli, A., Delgenes, J. P. and Carrere, H. "Combined Ozone Pretreatment and Anaerobic Digestion for the Reduction of Biological Sludge Production in Wastewater Treatment," Ozone-Sci. Eng., 29(3), 201-206(2007).   DOI   ScienceOn
42 Kim, D. J., Kim, H., "Sludge Solubilization by Pre-treatment and its Effect on Methane Production and Sludge Reduction in Anaerobic Digestion," Korean Chem. Eng. Res, 48(1), 103-109(2010).
43 Haug, R. T., Stuckey, D. C., Gossett, J. M. and Mac, Carty P. L., "Effect of Thermal Pretreatment on Digestibility and Dewaterability of Organic Sludges," J. Water Pol. Control Fed, 1, 73-85(1978).
44 Paul, E., Camacho, P., Sperandio, M. and Ginestet, P., "Technical and Economical Evaluation of a Thermal, and Two Oxidative Techniques for the Reduction of Excess Sludge Production," In 1st International Conference on Engineering for Waste Treatment. Albi (France)(2005).
45 Li, Y. Y. and Noike, T., "Upgrading of Anaerobic Digestion of Waste Activated Sludge by Thermal Pretreatment," Water Sci. Technol., 26(3-4), 857-866(1992).
46 Bougrier, C., Delgenes, J. P. and Carrere, H., "Combination of Thermal Treatments and Anaerobic Digestion to Reduce Sewage Sludge Quantity and Improve Biogas Yield," Process Saf. Environ. Prot., 84(B4), 280-284(2006).   DOI
47 Fernandez-Polanco, F., Velazquez, R., Perez-Elvira, S. I., Casas, C. D. del Barrio., Cantero, F. J., Fdz-Polanco, M., Rodriguez, P., Panizo, L., Serrat, J. and Rouge, P., "Continuous Thermal Hydrolysis and Energy Integration in Sludge Anaerobic Digestion Plants," Water Sci. Technol., 57(8), 1221-1226(2008).   DOI   ScienceOn
48 Miah, M., Tada, C. and Sawayama, S., "Enhancement of Biogas Production from Sewage Sludge with the Addition of Geobacillus sp. Strain AT1 Culture," Japan Journal of Water Treatment., 40(3), 97-104(2004),   DOI
49 Salsabil, M. R., Prorot, A., Casellas, M. and Dagot, C., "Pre-treatment of Activated Sludge: Effect of Sonication on Aerobic and Anaerobic Digestibility," Chem. Eng. J, 148(2-3), 327-335(2009).   DOI   ScienceOn
50 Valo, A., Carrere, H. and Delgenes, J. P., "Thermal, Chemical and Thermo-chemical Pre-treatment of Waste Activated Sludge for Anaerobic Digestion," J. Chem. Technol. Biotechnol. 79(11), 1197-1203(2004).   DOI   ScienceOn
51 Panter, K. and Kleiven, H., "Ten Years Experience of Full-scale Thermal Hydrolysis Projects. In: Proceedings of the 10th European Biosolids and Biowaste Conference," Wakefield, UK(2005).
52 Mayhew, M., Le, M. and Ratcliff, R., "A Novel Approach to Pathogen Reduction in Biosolids: the Enzymic Hydrolyser," Water Sci. Technol, 46(4/5), 7-434(2002).
53 Mayhew, M., Le, M., Brade, C. and Harrison, D., "The United Utilities Enzymic Hydrolysis Process-validation of Phased Digestion at Full-scale to Enhance Pathogen Removal," In: WEF Proceedings of the Residuals and Biosolids Conference, Baltimore, MD(2003).
54 Park, B., Ahn, J., Kim, J. and Hwang, S.. "Use of Microwave Pretreatment for Enhanced Anaerobiosis of Secondary Sludge," Water Sci. Technol., 50(9), 17-23(2004).
55 Zimpro Environmental, "Wet Air Oxidation Cleans up Black Wastewater," Chem Eng September, 175-176(1993).
56 Yasui, H. and Shibata, M., "An Innovative Approach to Reduce Excess Sludge Production in the Activated Sludge Process," Wat. Sci. Tech, 30(9), 11-20(1994).
57 Cooper, A. D., Benson, L., Bailey, W., Jolly, E. and Krill, W., "Maximizing Benefits from Renewable Energy at Blue Plains AWWTP", Water Environment Federation., 23-32(2010).
58 Yeom, I. T., Lee, K. R., Lee, Y. H., Ahn, K. H. and Lee, S. H., "Effects of Ozone Treatment on the Biodegradability of Sludge from Municipal Wastewater Treatment Plants," Water Sci. Technol., 46(4-5), 421-425(2002).
59 Weemaes, M., Grootaerd, H., Simoens, F. and Verstraete, W., "Anaerobic Digestion of Ozonized Biosolids," Water Res., 34(8), 2330-2336(2000).   DOI   ScienceOn
60 Xie, R., Xing, Y., Ghami Yahya, A., Ooi, K. and Ng, S., "Ultrasound Disintegration Technology in Improving Anaerobic Digestion of Sewage Sludge Under Trophic Conditions," In: Proceedings of the 10th European Biosolids and Biowaste Conference, Wakefield, UK(2005).
61 Onur Guven Apul, O. G. and Sanin, F. D., "Ultrasonic Pretreatment and Subsequent Anaerobic Digestion Under Different Operational Conditions," Bioresour. Technol., 101(23), 8984-8992(2010).   DOI   ScienceOn
62 Pilli, S., Bhunia, P., Yan, S., LeBlanc, R. J., Tyagi, R. D. and Surampall, R. Y., "Ultrasonic Pretreatment of Sludge: A Review," Ultrason. Sonochem., 18(1), 1-18(2011).   DOI   ScienceOn
63 Hogan, F., Mormede, S., Clark, P. and Crane, M., "Ultrasound Sludge Treatment for Enhanced Anaerobic Digestion," Water Sci. Technol., 50(9), 25-32(2004).
64 Kruger, R. and Hogan, F., "Using Sonix to Enhance Anaerobic Digestion: An Overview from Different Trials and Installations," In: WEF Proceedings of the Residuals and Biosolids Conference, Covington, KY(2005).
65 Saktaywin, W., Tsuno, H., Soyama, T. and Weerapakkaroon, J., "Advanced Sewage Treatment Process with Excess Sludge Reduction and Phosphorus Recovery," Water Res., 39, 902-910(2005).   DOI   ScienceOn
66 Zhang, S., Zhang, P., Zhang, G., Fan, J. and Zhang, Y., "Enhancement of Anaerobic Sludge Digestion by High-pressure Homogenization," Bioresour. Technol., 118, 496-501(2012).   DOI   ScienceOn
67 Kim, J., Park, C., Kim, T. H., Lee, M., Kim, S., Kim, S. W. and Lee, J., "Effects of Various Pretreatments for Enhanced Anaerobic Digestion with Waste Activated Sludge," J. Biosci. Bioeng, 95(3), 271-275(2008).
68 Levlin, E., "Maximizing Sludge and Biogas Production for Counteracting Global Warming. International Scientific Seminar, Research and Application of New Technologies in Wastewater Treatment and Municipal Solid Waste Diposal in Ukraine," Sweden and Poland 23-25 September 2009 Stockholm, Polish-Swedish, TRITA-LWR REPORT 3026, pp. 95-104(2010).
69 Muller, J. A., "Pre-treatment Processes for Recycling and Reuse of Sewage Sludge," Water Sci. Technol., 42, 167-174(2000).
70 Chu, L., Yan, S., Xing, X. H. and Jurick, B., "Progress and Perspectives of Sludge Ozonation as a Powerful Pretreatment Method for Minimization of Excess Sludge Production," Water Res., 43, 1811-1822(2009).   DOI   ScienceOn
71 Chu, C. P., Lee, D. J., Chang, B. V., You, C. S. and Tay, J. H., "Weak Ultrasonic Pre-treatment on Anaerobic Digestion of Flocculated Activated Biosolids," Water Res., 36(11), 2681-2688 (2002).   DOI   ScienceOn
72 Wett, B., Phothilangka, P. and Eladawy, A., "Systematic Comparison of Mechanical and Thermal Sludge Disintegration Technologies," Waste Manage., 30, 1057-1062(2010).   DOI   ScienceOn
73 Elmitvalli, T., "Treatment of Municipal Wastewater in Upflow Anaerobic Sludge Blanket (UASB) Reactor," WEB BASED TRAINING(2005).
74 Elliott, A. and Mahmood, T., "Pretreatment Technologies for Advancing Anaerobic Digestion of Pulp and Paper Biotreatment Residues," Water Res., 41, 4273-4286(2007).   DOI   ScienceOn
75 Evans. T., Independent review of retrofitting Cambi to Mad. In: WEF Proceedings of the 17th Residuals and Biosolids Conference, Baltimore, MD(2003).
76 Sato, K., Ochi, S. and Mizuochi, M., "Up-to Date Modification of the Anaerobic Sludge Digestion Process Introducing a Separate Sludge Digestion Mode," Water Sci. Technol., 44, 143-147(2001).
77 Bal, A. S. and Dhagat, N. N., "Upflow Anaerobic Sludge Blanket Reactor-a Review," Indian J Environ Health. 43(2), 1-82(2001).
78 Cecchi, F., Traverso, P. G., Mata-Alverez, J., Clancy, J. and Zaror, C., "State of the Art of R&D in the Anaerobic Digestion Process of Municipal Solid Waste in Europe," Biomass, 16, 257-284(1988).   DOI   ScienceOn
79 Speece, R., "Anaerobic Biotechnology for Industrial Wastewaters," Archae Press, Nashville, Tenessee, 394(2001).
80 Tyagi, V. K. and Lo, S. L., "Application of Physico-chemical Pretreatment Methods to Enhance the Sludge Disintegration and Subsequent Anaerobic Digestion: An up to Date Review," Rev Environ Sci Biotechnol., 10, 215-242(2011).   DOI
81 Carrere, H., Dumas, C., Battimelli, A., Batstone, D. J., Delgenes, J. P. and Ferre, S. I., "Pretreatment Methods to Improve Sludge Anaerobic Degradability: A Review Review," J. Hazard. Mater., 183(1-3), 1-15(2010).   DOI   ScienceOn
82 http://www.engineeringvillage2.com.
83 Tang, B., Yu, L., Huang, S., Luo, J. and Zhuo, Y., "Energy Efficiency of Pre-treating Excess Sewage Sludge with MW Irradiation," Biores Technol., 101, 5092-5097(2010).   DOI   ScienceOn
84 Taherzadeh, M. J. and Karimi, K., "Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review," Int. J. Mol. Sci. 9, 1621-1651(2008).   DOI   ScienceOn
85 Rittmann, B. and McCarty, P., "Environmental Biotechnology: Principals and Applications," McGraw-Hill, New York, 768(2000).
86 Penaud, V., Delgenes, J. P. and Moletta, R., "Influence of Thermochemical Pre-treatment Conditions on Solubilization and Anaerobic Biodegradability of a Microbial Biomass," Env Tech, 21, 87-96(2000).   DOI   ScienceOn
87 Kepp, U., Machenbach, I., Welsz, N. and Solhelm, O., "Enhanced Stabilization of Sewage Sludge Through Thermal Hydrolysisthree Years of Experience with Full Scale Plant," Water Sci. Technol., 42(9), 89-96(2000).