• 제목/요약/키워드: Water-repellency

검색결과 152건 처리시간 0.02초

포장지의 발수도 자동 해석 시스템 개발 -KS M 7057에 근거한 발수도 자동 측정- (Development of Automatic Analysis System for Water Repellency of Packaging Paper -Automatic Measurement of Water Repellency Based on KS M 7057-)

  • 김철환;최경민;강진기;박종열
    • 펄프종이기술
    • /
    • 제35권1호
    • /
    • pp.7-12
    • /
    • 2003
  • The test results for water repellency of paper and paperboard according to KS M 7057 can readily be influenced by an operator's bias. In order to discard such bias, the automatic analysis program of water repellency was developed based on different shape features of a liquid trace formed on a specimen. That is, the shape of a liquid track flowing down on the specimen with an angle of $45^{\circ}$ was evaluated according to width variation between head and tail of the trace($S_{Hr}$), uniformity of a liquid flow($S_{d}$), length of long traces($L_{SHr}$), eccentricity of liquid traces($E_{i}$), and then was recognized as a specific degree of water repellency. Finally, the automatic analysis system of water repellency based upon KS M 7057 made it possible to readily measure water resistance of paper and paperboards classified into R0 to R10.

발수발유 가공처리가 폴리에스테르 직물의 표면 특성에 미치는 영향 (The Effects of Water-and Oil-Repellent Finishes on the Surface Characteristics of Polyester Fabrics)

  • 하희정
    • 대한가정학회지
    • /
    • 제35권3호
    • /
    • pp.275-286
    • /
    • 1997
  • The effects of water-and oil-repellent finishes on the surface characteristics of polyester fabrics were investigated in this study. Three kinds of fluoropolyment were selected as water=and oil-repellent finishing agents. The effects of water-and oil-repellent finishes were determined by the water repellency and oil repellency. The surface properties of untreated and treated polyester fabrics were evaluated with respects to crease resistance, contact angle and wicking time. The results of this study were as follows: 1. The polyester fabrics treated with fluoropolymers showed much higher water repellency and oil repellency than those of untreated polyester fabrics. Water-and oil-repellency of fabrics were increased with the crystallinity and the hydrophobic-hydrophillic components of fluoropolymers. 2. Water repellency of fabrics treated with fluoropolymer with hydrophobic components was the highest. Oil repellency of fabrics treated with fluoropolymer with high crystallinity was the highest. Water-and oil-repellency of fabrics treated with fluoropolymer with hydrophyllic components was low comparatively. 3. The crease resistance of polyester fabrics treated with fluoropolymer nearly approached to that of untreated polyester fabric. 4. The water-and oil-repellent finishes improved contact angle markedly. Especially the contact angle of ployester fabric treated with fluropolymer with hydrophobic component was the biggest. 5. The wicking time of polyester fabric treated with fluropolymer with hydrophobic component was the longest.

  • PDF

Objective Measurement of Water Repellency of Fabric Using Image Analysis (I) - Methodology of Image Processing -

  • Jeong Young Jin;Jang Jinho
    • Fibers and Polymers
    • /
    • 제6권2호
    • /
    • pp.162-168
    • /
    • 2005
  • A methodology for the objective evaluation of water repellency is studied using image analysis of the sprayed pattern on woven fabrics according to a standard spray test (AATCC Test Method 22-2001). The wet area ratio obtained from the spray standard test ranking is found to be exponentially related with its water repellency rating. Mean filtering is used to remove the effect of weave texture and the transmitted light through interyarn spaces. The ring frame of the instrument and wet region are recognized using Otsu thresholding technique. And Hough transform and outline operation are used to obtain the size and position of the ring frame. The objective assessment of the water repellency using image processing can reduce unnecessary confusion in the subjective determination of the water repellency.

Effects of Silicone Mixed Fluorochemical Finishes on Fabric Performance Characteristics of a Microfiber Polyester/Cotton Blend Fabric

  • Ahn, Young-Moo;Li, Bin;Kim, Charles J.
    • 한국의류산업학회지
    • /
    • 제3권5호
    • /
    • pp.486-491
    • /
    • 2001
  • The purpose of this study was to examine the effects of chemical finishes on performance characteristics of microfiber blend fabrics. A 60% polyester microfiber/40% cotton blend woven fabric was finished by ten chemicals: three silicone softeners, one fluorochemical, and their mixtures. Performance characteristics examined were abrasion resistance, and oil/water repellency. Chemical finishes containing dimethylpolysiloxane silicone performed better in fabric abrasion resistance than other chemicals. The correlation between abrasion wear and instrumental measures of fabric hand indicated that the breaking strength loss by abrasion related negatively to the coefficient of friction. This implied that the finished fabrics with lower surface frictional coefficient (slipperier) had higher breaking strength loss by abrasion. The microfiber structure of polyester did not appear to help in oil/water repellency due to the larger surface areas of the microfibers. The fluorochemical finished fabric had the most significant improvement on oil/water repellency. The silicone-only finishes, however, did not improve oil/water repellency. When mixed with the fluorochemical, silicone finishes showed improved oil/water repellency.

  • PDF

직물 구조인자와 표면 가공특성이 스포츠 의류용 투습직물의 발수/방수/투습특성에 미치는 영향 (Effect of Fabric Structural Parameters and Surface Finishing Characteristics to Water Repellency/Proofing/Vapor Permeability of Breathable Fabrics for Sportswear Clothing)

  • 김현아
    • 한국의류산업학회지
    • /
    • 제22권1호
    • /
    • pp.112-118
    • /
    • 2020
  • This paper examined the water repellency, water proofing and water vapor permeability of twelve types of woven fabrics for sports wear clothing. Their physical properties were compared and discussed with the fabric structural parameters and surface finishing effect. A water repellent property of 100% was obtained in the coated or laminated water repellent finished fabrics; in addition, cotton/nylon breathable composite fabrics treated with a laminated finishing and with low fabric density showed a 90% water repellency. Water proofing fabric above 6,000 mm H2O hydraulic pressure was achieved by coated or laminated finishing; however, high density fabric or medium-level coated fabrics exhibited 100% water repellent and low water proofing characteristics. Superior water vapor permeability characteristics with good water repellency and proofing properties were achieved at the 2.5 layered low density and with 0.7 - 0.9 cover factor nylon fabrics treated with hydrophilic laminated finishing. The regression analysis for examining the effects of fabric structural parameters and surface finishing such as coating and laminating to the water vapor permeability exhibited a high determination coefficient of fabric structural parameters of 63.5%; in addition,, main factors among fabric structural parameters appeared to be cover factor and fabric thickness per weight. Coating and Laminating factors exhibited determination coefficient of water vapor permeability parameters of 36.5%.

DMDHEU/FC 일욕가공된 면/폴리에스테르 혼방직물의 DP성 및 발수성 (Durable Press Performance and Water Repellency of Cotton/Polyester Fabrics Finished by BMDHEU/Fluorochemicals)

  • 권영아
    • 한국염색가공학회지
    • /
    • 제10권5호
    • /
    • pp.24-31
    • /
    • 1998
  • The effects of DMDHEU alone and DMDHEU/Fluorochemical(FC) combined treatment on the physical properties of 75%/25% cotton/polyester(CP) blended fabrics were investigated. FC water repellent and DMDHEU durable press finishes were applied in combination to CP fabrics to provide good water repellency as well as great durable press(DP) performance. The physical properties of the fabrics were evaluated by wrinkle recovery angle(WRA), DP performance, contact angle, demand wettability, and water repellency. The durable press/water repellent finished(DP/WR) CP fabrics show considerably improved WRA and DP performance. The DP/WR finishes do not change the water contact angie of polyester fibers significantly, while the DP finishes increase it. Both DP and DP/WR finishes increase the contact angle of cotton fibers. The water uptake amount increases in the following order : DP/WR cotton, DP/WR CP<DP cotton, DP CP < Control CP, Control cotton. The water uptake amount increases in the following order DP/WR CP, DP/WR cotton <DP cotton <DP CP<Control CP, Control cotton. Considerable improvements for water repellency are imparted to the CP fabrics treated with DP/WR, and the level of improvement is not significantly different from that of the DP/WR cotton fabrics. These results lead to the conclusion that DP/YVR treatments a single pad bath on CP are effective finishes for improving both DP performance and water repellency.

  • PDF

불소수지를 이용한 분할형 PET/nylon 직물의 발수가공 (Water Repellent Finish for Divided Type PET/Nylon Fabrics with Fluoro Alkyl Resin)

  • Lee, Bang One;Pak, Pyong Ki;Cheong, Yun Suk;Lee, Hwa Sun
    • 한국염색가공학회지
    • /
    • 제9권4호
    • /
    • pp.1-6
    • /
    • 1997
  • Water repellent finish was carried out using water repellent agent(AG-480), melamine resin(Sumitex Resin MK), and catalyst(Sumitex Accelerator ACX). PET/nylon fabrics were treated with melamine resin by pad-dry-cure method and subsequently washed and dried. Durable water repellency was controlled by the melamine resin and catalyst. Water repellency was tested by spray rating method and durability of water repellency were measured by launder-O-meter and pilling tester. The optimum conditions of durable water repellent finish for new synthetic fabric were as follows; concentration of water repellent finishing agent 20g/l; concentration of melamine & catalyst 0.5g/l; curing condition $160^{\circ}$ ${\times}$ 30sec. Water repellency after washing and rubbing is improved by melamine resin and catalyst.

  • PDF

Effect of Washing and Subsequent Heat Treatment on Water Repellency and Mechanical Properties of Nylon 6, Triacetate and Silk Fabrics Treated with Hydrocarbon Resins

  • Park, Hyei-Ran;Lee, Mun-Cheul;Nishi, Kenji;Wakida, Tomiji
    • 한국염색가공학회지
    • /
    • 제20권6호
    • /
    • pp.87-91
    • /
    • 2008
  • It is commonly known that water repellency of the fabric treated with fluorocarbon resin brings about a decrease by the washing and recovers by the subsequent heat treatment. In this article, effect of the water repellency was investigated on the nylon 6, triacetate and silk fabrics treated with hydrocarbon and silicon resins. Hydrocarbon and silicon resins have been widely used in the textile finishing as the softening and water proofing agents. The fabrics were treated with hydrocarbon resins, Paragium JQ and RC (Ohara Paragium Chemical Co.) and a silicon resin, Poron MR (Shinetsu Chemical Co.), and then washed and subsequently heat treated. Although the water repellency increased by the resin treatment, it decreased by the washing apparently and recovered a little by the heat treatment. The effect of the heat treatment was small comparing with that of the fluorocarbon resin. Furthermore, as a mechanical property of the treated fabric, KES shearing and bending hysteresis parameters, modulus and hysteresis width of the hydrocarbon resin-treated nylon 6, triacetate and silk fabrics decreased by the heat treatment after washing. Therefore, the treatment is effective at improving the softening of the fabric in water repellent finish.

저온플라즈마처리에 의한 폴리에스테르직물의 흡수성 및 발수성 변화 (Wettability and Water Repellency of Polyester Fabrics Treated by Low Temperture Plasma)

  • 권영아
    • 한국의류학회지
    • /
    • 제19권2호
    • /
    • pp.317-328
    • /
    • 1995
  • The objective of this study was to determine the effects of low temperature plasma on the surface properties of polyester fabric with respect to wettability and water repellency. Highly wettable polyester fabric surfaces were obtained by oxygen treatment. The improved wettabililty of oxygen plasma treated fabrics decreased with aging time up to 30 days, and then the wettability remained relatively constant and still exhibited significant improvement compared to that of untreated polyester. Water repellency was significantly improved by tetratfluorocarbon plasma treatment. Such an improvement appears due to introduced fluo\ulcornerrine atoms or a thin fluorocarbon film on the fiber surface. Water repellency remained constant in fact, even after 150 days.

  • PDF

지방산 카르바미드/왁스/아크릴 공중합체의 블렌드에 의한 내구유연발수제의 제조에 관한 연구 (IV);P/C 혼방직물에의 발수처리 (A Study on the Preparation of Durable Softening Water Repellents by Blends of Fatty Carbamide/Wax/Acrylic Copolymer(IV);Water Repelling Treatment of P/C Blended Fabrics)

  • 박홍수;배장순
    • 한국응용과학기술학회지
    • /
    • 제12권2호
    • /
    • pp.51-58
    • /
    • 1995
  • To prepare a durable softening water repellent, quaternized octadecyl methacrylate-2-diethyl-aminoethyl methacrylate as a mother resin and quaternized 1, 3-dioctadecyl-2, 7-dioxy-6, 8-di(2-hydroxyethyl)-1, 3, 6, 8-tetraazacyclodecane which increase the softening effect and the hydrostatic pressure blended with waxes and their emulsifier in various proportions to give water repellent PADWC. As the results of the measurement of water repellency, washable, tear strength and crease recovery to polyestercotton(P/C) blended fabrics treated with PADWC only or addition of textile finishing resin, the physical properties were increased. There was no significant lowering effect in water repellency when PADWC was treated the antistatic agent by the one-bath method, and the effect of water repellency by the adding the catalyst was studied. PADWC was confirmed as durable water repellent with the results of making little difference of water repellency as ${\pm}5$ point after and before washing.