Browse > Article
http://dx.doi.org/10.5805/SFTI.2020.22.1.112

Effect of Fabric Structural Parameters and Surface Finishing Characteristics to Water Repellency/Proofing/Vapor Permeability of Breathable Fabrics for Sportswear Clothing  

Kim, Hyun Ah (Korea Research Institute for Fashion Industry)
Publication Information
Fashion & Textile Research Journal / v.22, no.1, 2020 , pp. 112-118 More about this Journal
Abstract
This paper examined the water repellency, water proofing and water vapor permeability of twelve types of woven fabrics for sports wear clothing. Their physical properties were compared and discussed with the fabric structural parameters and surface finishing effect. A water repellent property of 100% was obtained in the coated or laminated water repellent finished fabrics; in addition, cotton/nylon breathable composite fabrics treated with a laminated finishing and with low fabric density showed a 90% water repellency. Water proofing fabric above 6,000 mm H2O hydraulic pressure was achieved by coated or laminated finishing; however, high density fabric or medium-level coated fabrics exhibited 100% water repellent and low water proofing characteristics. Superior water vapor permeability characteristics with good water repellency and proofing properties were achieved at the 2.5 layered low density and with 0.7 - 0.9 cover factor nylon fabrics treated with hydrophilic laminated finishing. The regression analysis for examining the effects of fabric structural parameters and surface finishing such as coating and laminating to the water vapor permeability exhibited a high determination coefficient of fabric structural parameters of 63.5%; in addition,, main factors among fabric structural parameters appeared to be cover factor and fabric thickness per weight. Coating and Laminating factors exhibited determination coefficient of water vapor permeability parameters of 36.5%.
Keywords
water repellency; water proofing; water vapor permeability; laminated finishing; cover factor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cubric, I. S., Skenderi, Z., & Havenith, G. (2013). Impact of raw material, yarn and fabric parameters, and finishing on water vapor resistance. Textile Research Journal, 83(12), 1215-1228. doi: 10.1177/0040517512471745   DOI
2 Das, B., Das, A., Kothari, V. K., Fangueiro, R., & Araújo, M. D. (2009). Studies on moisture transmission properties of PV-blended fabrics. The Journal of the Textile Institute, 100(7), 588-597. doi:10.1080/00405000802125097   DOI
3 Gorjanc, D. S., Dimitrovski, K., & Bizjak, M. (2012). Thermal and water vapor resistance of the elastic and conventional cotton fabrics. Textile Research Journal, 82(14), 1498-1506. doi:10.1177/ 0040517512445337   DOI
4 Huang, J., & Qian, X. (2008). Comparison of test methods for measuring water vapor permeability of fabrics. Textile Research Journal, 78(4), 342-352. doi:10.1177/0040517508090494.   DOI
5 Kim, S. J., & Kim, H. A. (2010). Woven fabric engineering. In P. D. Dubrovski (Series Ed.), Data base system on the fabric structural design and mechanical property of woven fabric (pp. 169-194). Croatia: SCIYO. doi:10.5772/10472
6 Korean Standards Association. (2014). KS K ISO 4920 Textile fabrics- Determination of resistance to surface wetting(spray test), Korea Agency for Technology and Standards.
7 Kim, H. A., & Kim, S. J. (2017). Breathability of breathable fabrics for sportswear according to measuring method. Journal of the Fashion & Textile Research Journal, 19(4), 493-503. doi:10.5805/SFTI. 2017.19.4.493
8 Korean Standards Association. (2017). KS K ISO 2060 Textiles - Yarn from packages - Determination of linear density (mass per unit length) by the skein method, Korea Agency for Technology and Standards.
9 Korean Standards Association. (2017). KS K ISO 7211-2 Textiles - Woven farbics - Construction - Methods of analysis - Part 2 : Determination of number of threads per unit length, Korea Agency for Technology and Standards.
10 Korean Standards Association. (2015). KS K ISO 811 Testing method for water resistance of cloth: Low range hydrostatic pressure method, Korea Agency for Technology and Standards.
11 Korean Standards Association. (2015). KS K 0594 Test method for water vapour permeability of textiles, Korea Agency for Technology and Standards.
12 Lee, S. S., & Obendorf, S. K. (2012). Statistical modeling of water vapor transport through woven fabrics. Textile Research Journal, 82(3), 211-219. doi:10.1177/0040517511433145   DOI
13 McCullough, E. A., Kwon, M. S., & Shim, H. S. (2003). A comparison of standard methods for measuring water vapour permeability of fabrics. Measurement Science and Technology, 14(8), 1402-1408. doi:10.1088/0957-0233/14/8/328   DOI
14 Yingchun, D., & Jin, L. (2010). Dynamic moisture absorption behavior of poyester-cotton fabric and mathematical model. Textile Research Journal, 80(17), 1793-1802. doi:10.1177/0040517510365950   DOI
15 Ren, Y. J., & Ruckman, J. E. (2004). Condensation in three-layer waterproof breathable fabrics for clothing. International Journal of Clothing Science and Technology, 16(3), 335-347. doi:10.1108/ 09556220410527255   DOI
16 Rego, J. M., Verdu, P., Nieto, J., & Blanes, M. (2010). Comfort analysis of woven cotton/polyester fabrics modified with a new elastic fiber, part 2: Detailed study of mechanical, thermo- physiological and skin sensorial properties. Textile Research Journal, 80(3), 206-215. doi:10.1177/0040517508099910   DOI
17 Sampath, M. B., Aruputharaj, A., Senthilkumar, M., & Nalankilli, G. (2012). Analysis of thermal comfort characteristics of moisture management finished knitted fabrics made from different yarns. Journal of Industrial Textiles, 42(1), 19-33. doi:10.1177/1528083 711423952   DOI
18 Yoo, S. J., & Kim, E. A. (2008). Effects of multilayer clothing system array on water vapor transfer and condensation in cold weather clothing ensemble. Textile Research Journal, 78(3), 189-197. doi:10.1177/0040517507078793   DOI
19 Zhou, L., Feng, X., Du, Y., & Li, Y. (2007). Characterization of liquid moisture transport performance of wool knitted fabrics. Textile Research Journal, 77(12), 951-956. doi:10.1177/0040517507083518   DOI
20 Mukhopadhyay, A., Ishtiaque, S. M., & Uttam, D. (2011). Impact of structural variations in hollow yarn on heat and moisture transport properties of fabrics. Journal of the Textile Institute, 102(8), 700-712. doi:10.1080/00405000.2010.515104   DOI