• Title/Summary/Keyword: Water-holding Capacity (WHC)

Search Result 246, Processing Time 0.023 seconds

Experimental Analysis of Water Retention Characteristics in the Litter of Different Deciduous Trees (활엽수 낙엽의 수분저류 특성에 대한 실험적 분석)

  • Li, Qiwen;Choi, Hyungtae;Lee, Eun Jai;Im, Sangjun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.2
    • /
    • pp.83-93
    • /
    • 2016
  • This study purposed to examine the water retention capacity of floor litter in deciduous forests. Water holding capacity(WHC) and interception storage capacity of Alnus hirsuta Turcz. ex Rupr., Quercus acutissima, Quercus mongolica litters were experimentally estimated. Physical characteristics of litters were also obtained to understand the relationships between water-retention capacity and litter characteristics. Experiments showed that WHC increases with specific volume of litter, varying 244.4% to 416.8% of its dry mass. Interception storage have estimated with rainfall simulation experiments. Maximum interception storage ($C_{max}$) and minimum interception storage ($C_{min}$) of litters were 220% and 138% of dry mass in Alnus hirsuta Turcz. ex Rupr., 218% and 137% in Quercus acutissima, and 240% and 156% in Quercus mongolica. Both $C_{max}$ and $C_{min}$ increased linearly with litter mass, and the values of $C_{min}$ in broadleaf litters have also linear relation to leaf area.

Composition, Water-Holding Capacity and Effect on Starch Retrogradation of Rice Bran Dietary Fiber (미강 식이섬유의 조성과 보수력 및 전분노화에 미치는 영향)

  • Lee, Young-Heon;Moon, Tae-Wha
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.288-294
    • /
    • 1994
  • Dietary fiber contents in brans of the two representative Korean rice varieties, Chucheong and Sucheon were measured by the AOAC method, and the composition of total dietary fiber (TDF) was analyzed with the acid detergent fiber (ADF) procedure. Rice bran contained more than 25% of TDF, most of which was insoluble dietary fiber. Hemicellulose was shown to be the major constituent and rice bran dietary fiber contained distinctive amounts of cellulose and uronic acid. Consecutive acidalkaline treatment of rice bran considerably increased soluble dietary fiber (SDF) content and water-holding capacity (WHC). WHC of wheat flour-rice bran dietary fiber mixture increased with the proportion of rice bran dietary fiber. Analysis of the differential scanning calorimetry thermograms revealed that rice bran dietary fiber effectively retarded retrogradation of wheat starch.

  • PDF

Relationship between water-holding capacity and intramuscular fat content in Japanese commercial pork loin

  • Watanabe, Genya;Motoyama, Michiyo;Nakajima, Ikuyo;Sasaki, Keisuke
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.6
    • /
    • pp.914-918
    • /
    • 2018
  • Objective: The relationship between water-holding capacity (WHC) and intermuscular fat (IMF) was studied in Japanese commercial pork. Methods: Longissimus muscles of pigs (n = 62), obtained from two meat packing plants, were analyzed for IMF content, moisture content, drip loss, cooking loss, and pH. Pairwise relationships among these traits were determined using correlation analyses. Results: IMF content was significantly correlated with moisture content (r = -0.88; p<0.01) and pH (r = 0.32; p<0.05), but not with drip loss (r = -0.23; p = 0.07) or cooking loss (r = -0.10; p = 0.42). In contrast, drip loss was significantly (and negatively) correlated with pH (r = -0.57; p<0.01). Conclusion: IMF content was not significantly correlated with WHC in pork, and so ultimately, we consider pH to be one of the most important factors influencing WHC in pork meat.

Screening Study for the Functionality of Psyllium Husk as a Dietary Fiber Material (Psyllium Husk의 식이섬유 소재로서의 기능성 탐색)

  • Lee, Shin-Young;Back, Jin-Hong
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.229-239
    • /
    • 2005
  • Dietary powder from Plantaginis ovatae testa was prepared by mechnical milling/grinding of the outer layer of the seed. The crystalline/surface structures of its powder (100 mesh) were examined, and several physical functionalities including, water capacity, oil holding capacity, emulsion/foam properties and physiological functionality such as in-vitro glucose and bile acid retarding effects were also investigated. Water holding capacity(WHC) of psyllium powder was $33.71{\pm}0.10g$ water retained/g solid at room temperature, whileas oil holding capacity(OHC) for soybean or rice bran oil were about 1.80g oil retained/g solid. These values of WHC and OHC were about 5.6 times higher and 2.8 times lower than those of commercial ${\alpha}$-cellulose, respectively. Changes of pH showed a small effect on WHC, but WHC increased with temperature. Emulsion capacity of 2%(w/v) psyllium was about 60% level of 0.5%(w/v) xanthan gum but emulsion stability after incubation of 24 hours showed about 1.4 times improvement of xanthan gum(0.5%,w/v). Also, psylliume(above 2%, w/v) alone had higher foam capacity than that of xanthan(1.1 times) and especially, 1 or 2% addition of psyllium improved the foam stability of protein solution(1% albumin+0.5% $CaCl_2$) by factor of 3.3 and 6.0 times, respectively. The glucose and bile acid retarding effects of psyllium powder were relatively very excellent suggesting the prevention from diabetes and arteriosclerosis. Especially, psyllium showed the 3.7 and 3.3 times higher effect on in-vitro glucose and bile acid retardation than those of commercial ${\alpha}$-cellulose, respectively.

  • PDF

Characterization of Beef Transcripts Correlated with Tenderness and Moisture

  • Kee, Hyun-Jung;Park, Eung-Woo;Lee, Cheol-Koo
    • Molecules and Cells
    • /
    • v.25 no.3
    • /
    • pp.428-437
    • /
    • 2008
  • To identify transcriptional markers for beef traits related to meat tenderness and moisture, we measured the transcriptome of the Longissimus dorsi skeletal muscle in 10 Korean native cattle (KNC). We analyzed the correlation between the beef transcriptome and measurements of four different beef traits, shear force (SF), water holding capacity (WHC), cooking loss (CL), and loin eye area (LEA). We obtained non-overlapping and unique panels of genes showing strong correlations (${\mid}r{\mid}$ > 0.8) with SF, WHC, CL, and LEA, respectively. Functional studies of these genes indicated that SF was mainly related to energy metabolism, and LEA to rRNA processing. Interestingly, our data suggested that WHC is influenced by protein metabolism. Overall, the skeletal muscle transcriptome pointed to the importance of energy and protein metabolism in determining meat quality after the aging process. The panels of transcripts for beef traits may be useful for predicting meat tenderness and moisture.

Changes in Physicochemical Properties of Baik-kimchi during Fermentation (백김치 숙성중 물리화학적 특성변화)

  • 문수경;류홍수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.6
    • /
    • pp.1013-1020
    • /
    • 1997
  • To elicit the effect of fermentation on food quality of the watery Chinese cabbage pickles without fish sauce and red pepper paste(Baik-kimchi), changes in physicochemical properties and microstructure of fiber components were studied. Better water holding capacity(WHC) was showed in Baik-kimchi fermented at $25^{\circ}C$ than that of Baik-kimchi fermented at 5$^{\circ}C$. WHC measured at pH 2 and 6 were ranged from 10.18 to 16.79g/g dried sample for Baik-kimchi fermented at $25^{\circ}C$ and 6.51~14.58g/g dried sample for sample for samples at 5$^{\circ}C$, respectively. The higher WHC was resulted in pH controlled freeze-dried sample to pH 6 than that measured in pH 2 sample. The settling volume(SV) and oil adsorption capacity(OAC) increased with fermentation period and kept the same value for a little while, but slightly decreased in the over ripening period. Baik-kimchi fermented at $25^{\circ}C$ exhibited more shrunk microstructure of parenchyma cell and xylem than those of Baik-kimchi fermented at 5$^{\circ}C$. The appearance of SDF of the both Baik-kimchi ripened at 5$^{\circ}C$ and $25^{\circ}C$ could give granular shape, whereas the overripened Baik-kimchi had smooth surface of SDF. On the other hand, the IDF retained the original shape during fermentation.

  • PDF

Chemical Characterization and Water Holding Capacity of Fibre-rich Feedstuffs Used for Pigs in Vietnam

  • Ngoc, T.T.B.;Len, N.T.;Lindberg, J.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.6
    • /
    • pp.861-868
    • /
    • 2012
  • During two years, four samples per year were collected in Vietnam from rice bran, cassava residue, brewer's grain, tofu residue, soybean meal, coconut cake, sweet potato vines and water spinach for chemical analysis and assessment of water holding capacity (WHC). The selected feedstuffs represent fibre-rich plant sources and agro-industry co-products commonly used in pig feeding in Vietnam. The content (g/kg DM) of crude protein (CP), ether extract (EE) and non-starch polysaccharides (NSP) varied between feedstuffs and ranged from 21 to 506 for CP, from 14 to 118 for EE and from 197 to 572 for NSP. Cassava residue had a high starch content of 563 g/kg DM, while sweet potato vines, water spinach, coconut cake and soybean meal had a high content of sugars (63-71 g/kg DM). The content of individual neutral sugars varied between feed ingredients, with the highest content of arabinose, galactose and glucose in tofu residue, the highest content of xylose in brewer's grain and the highest content of mannose in coconut cake. The content of uronic acid was high for cassava residue, tofu residue, sweet potato vines and water spinach (57-88 g/kg DM). The content of soluble non-cellulosic polysaccharides (S-NCP) was positively correlated ($r^2$ = 0.82) to the WHC. The content (g/kg DM) of CP, NDF, neutral sugars, total NSP, total NCP, S-NCP and total dietary fibre in tofu residue, water spinach and coconut cake varied (p<0.05) between years. In conclusion, diet formulation to pigs can be improved if the variation in chemical composition of the fibre fraction and in WHC between potential feed ingredients is taken into account.

Water-holding Capacity and Antimicrobial Activity and of 1, 2-Hexanediol Galactoside Synthesized by β-Galactosidase (베타-갈락토시데이즈를 이용하여 합성한 1, 2-Hexanediol Galactoside의 보습력과 항균력에 대한 연구)

  • Kim, Yi-Ok;Jung, Kyung-Hwan
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.4
    • /
    • pp.373-379
    • /
    • 2017
  • We carried out the enzymatic synthesis of 1, 2-hexanediol galactoside (HD-gal) by transgalactosylation reaction using recombinant Escherichia coli ${\beta}-galactosidase$ (${\beta}-gal$). The amounts of ${\beta}-gal$ and 1, 2-hexanediol (HD), pH, and temperature, respectively, were first optimized (${\beta}-Gal$, 4.8 U/mL; HD, 75 mM; pH, 7.0; temperature, $37^{\circ}C$). Under these optimal conditions, about 96% HD was converted to HD-gal. When we investigated the water holding capacities (WHCs) of HD and HD-gal using pig epidermis in the concentrations of 84.4, 126.6, 168.8, 211.0 mM, WHC of HD-gal was superior to HD. In particular, at 168.8 mM HD and HD-gal, WHC of HD-gal showed about 20% greater than that of HD. However, it was observed that MIC values against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus of HD-gal were about three to ten times greater than those of HD, although MIC value of HD-gal against Enterococcus faecalis was almost the same as that of HD. Finally, it was concluded that the covalent bonding of a galactose molecule to HD (transgalactosylation) resulted in an increase in WHC of HD-gal and a decrease in anti-bacterial activity.

Dietary Fiber in Godulbaegi(Korean Lettuce, Ixeris sonchifolia H.) Kimchi (고들빼기김치 식이섬유질의 식품학적인 특성)

  • Hong-Soo Ryu;Eun-Young Hwang;Soon-Sil Chun;Kun-Young Park
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.3
    • /
    • pp.404-408
    • /
    • 1995
  • The effect of processing conditions on the changes in the contents of dietary fiber fractions and its physical properteis of Godulbaegi(Korean lettuce, Ixeris sonchifolia H.) was determined during preparation and fementation for kimchi. Water holding capacity(WHC) and oil adsorption capacity(OAC) were also checked on the subject of freeze dried powder from different stages of the kimchi processing. Neutral detergent fiber(NDF) content in young samples(leaf and root) decreased with prolonged soaking and fermentation period. Every young samples had a higher level in NDF than in ripe samples. Noticeable decrease in acid detergent fiber(ADF) without a change in ripe roots was showed after fermentation($4^{\circ}C$, 60 days). The water holding capacity of freeze dried young plants ranged from 5.78ml/g for roots to 6.31ml/g for leaves. Soaking and fermentation resulted in decreasing WHC and about 50% of WHC(raw leaves) was lowered after kimchi fermentation($4^{\circ}C$, 40 days). OAC of all samples were lower than WHC in same samples significantly and those were also decreased after soaking and fermentations as WHC.

  • PDF

Effects of High Pressure on pH, Water-binding Capacity and Textural Properties of Pork Muscle Gels Containing Various Levels of Sodium Alginate

  • Chen, Cong-Gui;Borjigin, Gerelt;Jiang, Shao-Tong;Tadayuki, Nishiumi;Atsushi, Suzuki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.11
    • /
    • pp.1658-1664
    • /
    • 2006
  • The objective of this study was to investigate the effects of sodium alginate (SA) and pressurization levels on pH, water-binding and textural properties of pork muscle gels (PMG) containing salt. Ground lean pork with 1.0% NaCl and a given amount of SA (0.25, 0.5, 0.75 and 1.0%, respectively), was pressurized to 100, 200 or 300 MPa and subsequently gelled by heating. Results showed that addition of SA into pork muscle enhanced water-holding capacity (WHC) of PMG (p<0.05) as SA increased from 0.25% to 1.0%, with pH slightly increased (p>0.05). A decrease (p<0.05) was observed in all textural parameters (hardness, cohesiveness, springiness and chewiness). Pressurization had no effect on the tendency of WHC to increase or the decrease of the textural parameters. However, the effectiveness of pressurization to enhance textural properties of PMG was significant at some SA levels, especially ${\geq}200MPa$ and at ${\leq}0.75%$ SA levels. Different combinations of pressure and SA levels could bring about variation in textural properties of PMG while SA enhanced WHC of pork muscle. The multiformity of the texture will open up a wide range of technological possibilities for the manufacture of pork-based restructured low-fat products.