• Title/Summary/Keyword: Water-blowing rudder

Search Result 4, Processing Time 0.017 seconds

On Flow Charactistics around Special Rudders by PIV Measurement; Flapped and Water-blowing Rudder (PIV 계측에 의한 특수타 주위의 유동특성에 대하여; 플랩러더와 물분사러더)

  • Gim, Oxoc
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.2
    • /
    • pp.200-207
    • /
    • 2017
  • The purpose in having a control surface on ships is to control the motion of the ship. The control surface may be composed entirely of a single movable surface or of a combination of fixed and movable portions. A control surface has one sole function to perform in meeting its purpose, and that is to develop a control force in consequence of its orientation and movement relative to the water. The forces and moments generated as a result of this rotation and angle of attack then determine the manoeuvring characteristics of the ship. In this paper, two-dimensional flow characteristics of a flapped rudder and a water-blowing control rudder were accomplished respectively by PIV method in a circulating water channel. Model test has been carried out with different angles of attack of main foil (NACA 0012) and flap's deflection angles to predict the performance of the flapped rudder and the water-blowing control rudder. The 2-frame particle tracking method has been used to obtain the velocity distribution in the flow field. $Re{\fallingdotseq}3.0{\times}10^4$ has been used during the whole experiments and measured results have been compared with each other.

An Experimental Evaluation of the Coanda Jet Applied High Efficient Rudder System for VLCC

  • Park, Bong-Joon;Kim, Hyo-Chul
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.2
    • /
    • pp.1-12
    • /
    • 2004
  • To keep the ocean environment from pollutions, strict international requirements on the controllability are arisen to the VLCC. Especially in low speed operations near the harbor, the VLCC is often supported by tug to replenish the insufficient rudder force. When water jet is blown to the flapped rudder, the Coanda effect induces a high-lift force by delaying stall and re-enforcing circulation in a large angle of attack (Lachmann 1961, Ahn 2003). Based on numerous research efforts, the rudder system supported by the Coanda effect was devised and its performances were evaluated in the towing tank for a large VLCC model. Hydrodynamic forces acting on the rudder system were measured with a water jet blowing on the rudder surface and compared with those acting on a conventional rudder. The effectiveness of the new rudder system was proven through an experimental evaluation.

A Study on the Interaction between Hull-Propeller and a High-Lifting Horn-type Rudder (선체-프로펠러와 고양력 혼타의 상호작용에 관한 연구)

  • Kim, Doo-Dong;Lee, Young-Gill
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.346-356
    • /
    • 2011
  • Rudder is to be located in extremely complicated flows generated and disturbed behind a hull and a propeller in operation. In order to estimate the rudder efficiency, it is quite important to investigate the disturbed flows due to the interaction under the hull-propeller and rudder condition. The purpose of the present research is to investigate the interaction between the hull-propeller and a high-lifting horn-type rudder through both numerical computations and experiments. A horn-type rudder implementing the Coanda effect of USB (Upper Surface Blowing) type is selected for its high efficiency of lifting force, and a 1/85 scaled model of 47K PC(Product Carrier) is manufactured for the purpose of the model test. The forces acting on the rudder during the experiment are measured using a three-component force gauge. Both cases are investigated in the hull-propeller-rudder condition and rudder open-water condition, which confirms that the flows generated under the former condition is considerably different from that of the latter condition.

An Advanced Study on the Development of Marine Lifting Devices Enhanced by the Blowing Techniques

  • Ahn Haeseong;Yoo Jaehoon;Kim Hyochul
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.4
    • /
    • pp.1-9
    • /
    • 2004
  • High lifting devices used for control purposes have received much attention in the marine field. Hydrofoils for supporting the hull, roll stabilizer fins for developing the motion damping performance, rudders for maneuverability are the well-known devices. In the present study, the ability of the rudder with flap to produce high lift was analyzed. The boundary layer control, one of the flow control techniques, was adopted. Especially, to build the blown flap, a typical and representative type of a boundary layer control, a flapped rudder was designed and manufactured so that it could eject the water jet from the gap between the main foil and the flap to the flap surface tangentially. And it was tested in the towing tank. Simultaneously, to know the information about the 2-dimensional flow field, a fin model with similar characteristics as the rudder model applicable for the motion control was made and tested in the cavitation tunnel. In addition, local flow measurements were carried out to obtain physical information, for example, a surface pressure measurement and flow visualization around the flap. And CFD simulation was used to obtain information difficult to collect from the experiment about the 2-dimensional flow.