• Title/Summary/Keyword: Water yield

Search Result 2,898, Processing Time 0.042 seconds

β-Glucan Content and Antioxidant Activity of Mixed Extract from Sarcodon aspratus and Rice Bran (능이버섯과 미강 혼합 추출물의 β-Glucan 함량 및 항산화 활성)

  • Sim, Wan-Sup;Choi, Sun-Il;Jung, Tae-Dong;Cho, Bong-Yeon;Choi, Seung-Hyun;Han, Xionggao;Lee, Jin-Ha;Seo, Yu-Ri;Kim, Hye-Been;Lim, Ki-Taek;Lee, Ok-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.3
    • /
    • pp.200-206
    • /
    • 2018
  • This study was to investigate the optimal condition of mixture ratio for development of functional food ingredient from Sarcodon aspratus and rice bran. First, $^{\circ}Brix$ was measured along with extraction time. Five kinds of mixtures of Sarcodon aspratus and rice bran (10:0, 7:3, 5:5, 3:7, 0:10) were extracted in $95^{\circ}C$ water over a one-hour period and the extraction yield was evaluated. We further evaluated ${\beta}-glucan$ content, DPPH radical scavenging activity, ferric ion reducing antioxidant power (FRAP), total phenolic content and total flavonoids content. As a result, both Sarcodon aspratus and rice bran showed a constant $^{\circ}Brix$ after 45 minutes of extraction time. The content of ${\beta}-glucan$ was highest in the Sarcodon aspratus and rice bran mixture with a ratio of 3:7. As the ratio of rice bran increased in all mixtures, the antioxidant capacity also increased. In conclusion, to create a functional food ingredient the optimal mixing ratio of Sarcodon aspratus to rice bran is 3:7.

Performance Characteristics of Agitated Bed Manure Composting and Ammonia Removal from Composting Using Sawdust Biofiltration System (교반식 축분 퇴비화 및 톱밥 탈취처리 시스템의 퇴비화 암모니아 제거 성능)

  • Hong, J.H.;Park, K.J.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.1
    • /
    • pp.13-20
    • /
    • 2007
  • Sawdust biofiltration is an emerging bio-technology for control of ammonia emissions including compost odors from composting of biological wastes. Although sawdust is widely used as a medium for bulking agent in composting system and for microbial attachment in biofiltration systems, the performance of agitated bed composting and sawdust biofiltration are not well established. A pilot-scale composting of hog manure amended with sawdust and sawdust biofiltration systems for practical operation were investigated using aerated and agitated rectangular reactor with compost turner and sawdust biofilter operated under controlled conditions, each with a working capacity of approximately $40m^3\;and\;4.5m^3$ respectively. These were used to investigate the effect of compost temperature, seed germination rate and the C/N ratio of the compost on ammonia emissions, compost maturity and sawdust biofiltration performance. Temperature profiles showed that the material in three runs had been reached to temperature of 55 to $65^{\circ}C$ and above. The ammonia concentration in the exhaust gas of the sawdust biofilter media was below the maximum average value as 45 ppm. Seed germination rate levels of final compost was maintained from 70 to 93% and EC values of the finished compost varied between 2.8 and 4.8 ds/m, providing adequate conditions for plant growth.

  • PDF

Physicochemical Quality Characteristics of Pork Patty with Tangerine (Citrus unshiu) Peel (감귤껍질을 첨가한 돈육 patty의 이화학적 품질특성)

  • Choi, Gang-Won;Lee, Jong-Wook
    • Journal of Life Science
    • /
    • v.27 no.2
    • /
    • pp.123-130
    • /
    • 2017
  • This study was conducted to investigate the physicochemical quality characteristics of pork patty added with four different amount (T0:0%, T1:0.3%, T2:0.7%, T3:1.0%) of tangerine (Citrus unshiu) peel. There was no significant difference in chemical composition, cooking yield, water holding capacity, moisture retention, fat retention, hardness, springiness, cohesiveness, gumminess, chewiness, VBN content, L-value. In taste, texture, juiciness and palatability, the addition of 0.3%~1.0% tangerine peel in pork patty showed no significant difference on sensory properties compared to the pork patty without tangerine peel. Total polyphenol content was highest in T3, and DPPH radical scavenging activity was highest in T2 and T3 (p<0.001). The TBARS contents decreased as tangerine peel become added (p<0.001). The pH was highest in T0, and was lowest in T3 (p<0.001). The external a-value of T2 and T3 were significantly higher than that of T0 (p<0.01). The external and internal b-value of T2 and T3 were higher than those of T0 (p<0.01). Flavor of T2 and T3 were higher than those of T0 and T1 (p<0.01). In conclusion, the results of this study indicate that an addition of tangerine peel could be utilized as an ingredient in pork patty in promotion of function of tangerine by-products.

Initial Ecological Risk Assessment of 1,2-Benzisothiazol-3-one in Environment (환경 중 1,2-Benzisothiazol-3-one에 대한 초기 생태위해성 평가)

  • Han, Hye-Jin;Kim, EunJu;Yoo, SunKyoung;Ro, Hi-Young;Baek, Yong-Wook;Shim, IlSeob;Eom, Ig-Chun;Kim, Hyun-Mi;Kim, PilJe;Choi, Kyunghee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.165-170
    • /
    • 2013
  • In this study, physico-chemical properties and environmental fate were investigated and ecotoxicity tests using fish, daphnia and algae were conducted for an initial ecological risk assessment of 1,2-Benzisothiazol-3-one. Due to low volatility of the test substance under environmental conditions, it is likely to distributed in soil and water environment. The compound has low adsorption in the soil, with low bioconcentration potential. Acute toxicity results showed that 96 h-$LC_{50}$ for Oryzias laties was 4.7 mg/L (measured) and 48h-$EC_{50}$ for Daphnia magna was 3.3 mg/L (measured). In a growth inhibition test with Pseudokirchneriella subcapitata, 72 h-$EC_{50}$ was 0.456 mg/L (growth rate, nominal) and 0.262 mg/L (yield, nominal). Using the acute toxicity value of algae, predicted no-effect concentration (PNEC) in the aquatic environment was determined to be 2.62 ${\mu}g/L$ using an factor of 100. According to globally harmonized system (GHS), the compound was categorized as aquatic acute 1 for algae, while it was categorized as aquatic acute 2 for fish and daphnia. This screening assessment suggests that the test substance may pose ecological risks in the aquatic environment.

A Study on the Activity of Anti-Aging by Second Fermented Snail Extract with Hericium erinaceum Mycelium (노루궁뎅이버섯 균사체를 이용한 2 차 발효달팽이 추출물의 항노화 활성에 관한 연구)

  • Zhoh, Choon-Koo;Lee, Min-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.143-154
    • /
    • 2016
  • This study is related to develop a snail extract through a snail secondary fermentation process, getting anti-aging activity with healthy and beauty skin care scientific applications. In order to obtain a primary fermentation was incubated with Hericium erinaceus mycelium. Through the secondary fermentation process using Leuconostoc mesenteroides, was deeply described a total process of obtaining second fermented extract using snail body. Mycelium is applied in this study was extracted using Hericium erinaceus mycelium and Leuconostoc mesenteroides. The final yield of the extract was 62 wt%. Experimental results of secondary fermentation snail extract were contained with 32 wt% water, 31.5 wt% total amino acid protein, 15.7 wt% polysaccharide, 12.3 wt% fatty acid and others 8.5 wt%. In addition, in order to study about skin beauty care and anti-aging activity, we evaluated antioxidant activity with DPPH, elastin enzyme (elastase) inhibitory activity, tyrosinase inhibition rate, collagen synthetic function, fibroblast synthetic activity. First; anti-oxidative activity of secondary fermentation snail extract (IC50%) was spent with 7.27 mg/mL, control samples were spent with green tea extract was 11.8 mg/mL, common snails extract was 15.7 mg/mL, DL-a-tocopherol was 9.25 mg/mL respectively. Second; elastin enzyme inhibitory activity of secondary fermentation snail extract (IC50%) was spent with 32.5 mg/mL, control samples were also spent with green tea extract was 45.9 mg/mL, general snail extract was 67.7 mg/mL. Third; tyrosinase inhibitory activity of secondary fermentation snail extract (IC50%) was spent with 140.3 mg/mL, control samples were also spent with green tea extract was 250.7 mg/mL, general snails extract was 389.5 mg/mL, niacineamide was 125.9 mg/mL. Forth; fibroblast synthetic activity of secondary fermentation snail extract was increased with 125.6%, control samples were also spent with green tea extract was 98.9%, general snails extract was 109.5%, niacineamide was 125.9 mg/mL, DL-a-tocopherol was 96.2%. Fifth; collagen synthetic activity of secondary fermentation snail extract was increased with 118%, control samples were also spent with green tea extract was 87.3%, general snails extract was 93.2%, adenosine was 127.9%. In conclusion, on the basis of this study, in the future it is expected to be applied to the skin beauty care application and development of Korean style cosmetic products.

Inhibitory Effects of Sasa borealis Leaves Extracts on Carbohydrate Digestive Enzymes and Postprandial Hyperglycemia (조릿대잎 추출문의 탄수화물 소화효소활성 저해 및 식후혈당강하효과)

  • Hwang, Ji-Young;Han, Ji-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.8
    • /
    • pp.989-994
    • /
    • 2007
  • This study was designed to investigate whether Sasa borealis leaves extracts (SLE) may inhibit yeast ${\alpha}-glucosidase$ and ${\alpha}-amylase$ activities and postprandial hyperglycemia in STZ-induced diabetic mice. Freeze-dried SLE was extracted with 70% methanol and followed by a sequential fractionation with dicholoromethan, ethylacetate, butanol, and water. Both ethylacetate and butanol fractions showed high inhibitory activities against the ${\alpha}-glucosidase$ and ${\alpha}-amylase$ enzymes. The $IC_{50}$ of ethylacetate and butanol fractions against ${\alpha}-glucosidase$ were 0.54 and 0.63 mg/mL, respectively, indicating a greater inhibition effect than acarbose (0.68 mg/mL) (p<0.05). Likewise, the two fractions exhibited a smaller $IC_{50}$ against ${\alpha}-amylase$, compared with acarbose (p<0.05). However, the yield of ethylacetate fraction of SLE was relatively small. Postprandial blood glucose testing of normal mice and STZ-induced diabetic mice by starch soln. loading (2 g/kg B.W.) showed that postprandial blood glucose level at 30, 60, and 120 min were markedly decreased by single oral administration of SLE butanol fraction (200 mg/kg B.W.) in both normal (p<0.0l) and diabetic mice (p<0.0l). Furthermore, the incremental area under the curve (AUC) was significantly lowered via SLE administration (5,745 versus 12,435 $mg{\cdot}mim/dL$) in the diabetic mice (p<0.0l). The incremental AUC in normal mice corroborated the hypoglycemic effect of SLE (p<0.0l) found in the diabetic mice. These results suggest that SLE may delay carbohydrate digestion and thus glucose absorption. In addition, SLE may have the potential to prevent and treat diabetes via its ability on lowering postprandial hyperglycemia.

THE ECOLOGY, PHYTOGEOGRAPHY AND ETHNOBOTANY OF GINSENG

  • Hu Shiu Ying
    • Proceedings of the Ginseng society Conference
    • /
    • 1978.09a
    • /
    • pp.149-157
    • /
    • 1978
  • Ginseng is the English common name for the species in the genus Panax. This article gives a broad botanical review including the morphological characteristics, ecological amplitude, and the ethnobotanical aspect of the genus Panax. The species of Panax are adapted for life in rich loose soil of partially shaded forest floor with the deciduous trees such as linden, oak, maple, ash, alder, birch, beech, hickory, etc. forming the canopy. Like their associated trees, all ginsengs are deciduous. They require annual climatic changes, plenty of water in summer, and a period of dormancy in winter. The plant body of ginseng consists of an underground rhizome and an aerial shoot. The rhizome has a terminal bud, prominent leafscars and a fleshy root in some species. It is perennial. The aerial shoot is herbaceous and annual. It consists of a single slender stem with a whorl of digitately compound leaves and a terminal umbel bearing fleshy red fruits after flowering. The yearly cycle of death and renascence of the aerial shoot is a natural phenomenon in ginseng. The species of Panax occur in eastern North America and eastern Asia, including the eastern portion of the Himalayan region. Such a bicentric generic distributional pattern indicates a close floristic relationship of the eastern sides of two great continental masses in the northern hemisphere. It is well documented that genera with this type of disjunct distribution are of great antiquity. Many of them have fossil remains in Tertiary deposits. In this respect, the species of Panax may be regarded as living fossils. The distribution of the species, and the center of morphological diversification are explained with maps and other illustrations. Chemical constituents confirm the conclusion derived from morphological characters that eastern Asia is the center of species concentration of Panax. In eastern North America two species occur between longitude $70^{\circ}-97^{\circ}$ Wand latitude $34^{\circ}-47^{\circ}$ N. In eastern Asia the range of the genus extends from longitude $85^{\circ}$ E in Nepal to $140^{\circ}$ E in Japan, and from latitude $22^{\circ}$ N in the hills of Tonkin of North Vietnam to $48^{\circ}$ N in eastern Siberia. The species in eastern North America all have fleshy roots, and many of the species in eastern Asia have creeping stolons with enlarged nodes or stout horizontal rhizomes as storage organs in place of fleshy roots. People living in close harmony with nature in the homeland of various species of Panax have used the stout rhizomes or the fleshy roots of different wild forms of ginseng for medicine since time immemorial. Those who live in the center morphological diversity are specific both in the application of names for the identification of species in their communication and in the use of different roots as remedies to relieve pain, to cure diseases, or to correct physiological disorders. Now, natural resources of wild plants with medicinal virtue are extremely limited. In order to meet the market demand, three species have been intensively cultivated in limited areas. These species are American ginseng (P. quinquefolius) in northeastern United States, ginseng (P. ginseng) in northeastern Asia, particularly in Korea, and Sanchi (P. wangianus) in southwestern China, especially in Yunnan. At present hybridization and selection for better quality, higher yield, and more effective chemical contents have not received due attention in ginseng culture. Proper steps in this direction should be taken immediately, so that our generation may create a richer legacy to hand down to the future. Meanwhile, all wild plants of all species in all lands should be declared as endangered taxa, and they should be protected from further uprooting so that a. fuller gene pool may be conserved for the. genus Panax.

  • PDF

The Effect of Tillage Methods after Application of Liquid Pig Manure on Silage Barley Growth and Soil Environment in Paddy Field (돈분액비 시용 논에서 경운방법이 청보리 생육 및 토양환경에 미치는 영향)

  • Yang, Chang-Hyu;Lee, Sang-Bog;Kim, Taek-Kyum;Ryu, Jin-Hee;Yoo, Chul-Hyun;Lee , Jeong-Jun;Kim, Jae-Duk;Jung, Kwang-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.5
    • /
    • pp.285-292
    • /
    • 2008
  • To investigate the effect of tillage methods on the silage barely growth and the soil environment in paddy field, liquid pig manure(LPM) was applied after harvesting rice at Jisan series soil for 2 years. Five plots, a LPM applied rate as N%; 0, 100, 150, 200(basal dressing) and 100(basal dressing)+50(additional fertilizer) were divided by tillage methods; non-tillage, non-tillage+rice straw and rotary tillage method. Emission amounts of $NH_3$ gas highly decreased in the rotary tillage and the non-tillage+rice straw plot compared to non-tillage plot. The contents of soil organic matter and exchangeable cation were increased in the applied LPM plot. $NH_4-N$ and $NO_3-N$ contents in soil were the highest in the non-tillage+rice straw plot and followed by the rotary tillage and highly decreased along with the growth of plant. Run-off rate of mineral components were higher in order of the rotary tillage plot£æthe non-tillage plot£æthe non-tillage+rice straw plot and then leached to $SO_4$, $NO_3-N$, K plentifully. The yield of silage barley in dry weight was higher in order of the non-tillage+rice straw plot>the rotary tillage plot>the non-tillage plot. To estimate the feed value of silage barley, crude protein, acid detergent fiber(ADF) and neutral detergent fiber(NDF) contents were analyzed. Crude protein and ADF contents were the highest at rotary tillage N150% plot as 9.7 and 29.4%, respectively. NDF contents was the highest at non-tillage+rice straw N150% plot as 56.7%. In conclusion, we recommend not to incinerate rice straw and to apply LPM at non-tillage status in cultivating the silage barley. This may prevent water pollution and increase barley yields.

Extraction Characteristics of Flavonoids from Lonicera flos by Supercritical Fluid Carbon Dioxide ($SF-CO_2$) with Co-solvent (초임계유체 $CO_2$ 및 Co-solvent 첨가에 따른 금은화(Lonicera fles)의 Flavonoid류 추출특성)

  • Suh, Sang-Chul;Cho, Sung-Gill;Hong, Joo-Heon;Choi, Yong-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.183-188
    • /
    • 2005
  • Effects of co-solvent polarity, citric acid, pressure, temperature, run time, and co-solvent ratio on extraction of major flavonoids from Lonicera Flos were investigated using supercritical fluid $CO_{2}(SF-CO_{2})$. HPLC analysis revealed addition of pure methanol resulted in low extraction yield of major flavonoids, luteoloin (Lu), Quercetin (Qu), Apigenin (Ap). Under same condition, as co-solvent polarity increased, yields of major flavonoids increased gradually, At optimum co-solvent extraction condirion of 60% aqueous methanol (10%, v/v), yields of Lu, Qu, and Ap were 42.09, 28.18, and 3.49 mg/100 g, respectively. Addition of citric acid to 60% aqueous methanol gave higher, with addition of 1% citrie acid resulting in highest yields of 63.2 (Lu), 39.35 (Qu), and 5.79 (Ap) mg/100 g. Optimum extraction conditions of major flavonoids were 200 bar, $50^{\circ}C$, 60 min, and $CO_{2}$-methanol-water(20: 1.8: 1.2).

Photosynthetic and Growth Responses of Chinese Cabbage to Rising Atmospheric CO2 (대기 중 CO2 농도의 상승에 대한 배추의 광합성과 생장 반응)

  • Oh, Soonja;Son, In-Chang;Wi, Seung Hwan;Song, Eun Young;Koh, Seok Chan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.357-365
    • /
    • 2016
  • The effects of elevated atmospheric $CO_2$ on photosynthesis and growth of Chinese cabbage (Brassica campestris subsp. napus var. pekinensis) were investigated to predict productivity in highland cropping in an environment where $CO_2$ levels are increasing. Vegetative growth, based on fresh weight of the aerial part, and leaf characteristics (number, area, length, and width) of Chinese cabbage grown for 5 weeks, increased significantly under elevated $CO_2$ ($800{\mu}mol{\cdot}mol^{-1}$) compared to ambient $CO_2$ ($400{\mu}mol{\cdot}mol^{-1}$). The photosynthetic rate (A), stomatal conductance ($g_s$), and water use efficiency (WUE) increased, although the transpiration rate (E) decreased, under elevated atmospheric $CO_2$. The photosynthetic light-response parameters, the maximum photosynthetic rate ($A_{max}$) and apparent quantum yield (${\varphi}$), were higher at elevated $CO_2$ than at ambient $CO_2$, while the light compensation point ($Q_{comp}$) was lower at elevated $CO_2$. In particular, the maximum photosynthetic rate ($A_{max}$) was higher at elevated $CO_2$ by 2.2-fold than at ambient $CO_2$. However, the photosynthetic $CO_2$-response parameters such as light respiration rate ($R_p$), maximum Rubisco carboxylation efficiency ($V_{cmax}$), and $CO_2$ compensation point (CCP) were less responsive to elevated $CO_2$ relative to the light-response parameters. The photochemical efficiency parameters ($F_v/F_m$, $F_v/F_o$) of PSII were not significantly affected by elevated $CO_2$, suggesting that elevated atmospheric $CO_2$ will not reduce the photosynthetic efficiency of Chinese cabbage in highland cropping. The optimal temperature for photosynthesis shifted significantly by about $2^{\circ}C$ under elevated $CO_2$. Above the optimal temperature, the photosynthetic rate (A) decreased and the dark respiration rate ($R_d$) increased as the temperature increased. These findings indicate that future increases in $CO_2$ will favor the growth of Chinese cabbage on highland cropping, and its productivity will increase due to the increase in photosynthetic affinity for light rather than $CO_2$.