• Title/Summary/Keyword: Water use efficiency

Search Result 944, Processing Time 0.031 seconds

Quality Evaluation of Irrigation Scheduling on Upland Crops by Crop Development Rates (주요 밭작물의 생육단계에 따른 관개 스케줄링의 효율성 평가)

  • Kim, Dong-Hyun;Kim, Jongsoon;Kwon, Soon Hong;Park, Jong Min;Choi, Won-Sik;Kwon, Soon Gu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.333-341
    • /
    • 2021
  • Irrigation scheduling is a water management strategy of applying the proper amount of water in a plant's root zone at the right time to maximize profit. We conducted an experimental evaluation of the response of soybean, sorghum, and sesame to an irrigation scheduling scheme. The soil water contents were adjusted in the root zone between 20% and 28% to reflect changes in crop water consumption. The other ones fixed at 25% during the whole growing season were compared to evaluate the effectiveness of irrigation scheduling. Surface drip irrigation (SDI) were employed as an irrigation method. For all three crops, the evapotranspiration (ET) was the greatest at flowering stage (6.93 mm), followed by vegetative growth stage (5.00 mm) and maturity stage (2.53 mm). The irrigation amount was significantly reduced by 21.8% (soybean), 22.2% (sorghum), and 16.1% (sesame), respectively, compared with the ones at constant soil water content treatment. Their water use efficiency (WUE) were also much higher than the controls: 2.65-fold increase at soybean, 1.82-fold increase at sorghum, and 1.47-fold increase at sesame. These results showed that an effective irrigation scheduling on upland crops (soybean, sorghum, sesame) could increase crop yield while minimizing water use.

Water Absorption Sensor of Generator Stator Bar Insulation using Cross Capacitance (크로스 커패시턴스를 이용한 발전기 고정자 권선 절연물 흡습 측정 센서)

  • Bae, Yong-Chae;Kim, Hee-Soo;Lee, Doo-Young;Lee, Wook-Ryun;Lee, Rae-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1972-1977
    • /
    • 2011
  • The mechanical integrity of generator stator windings is one of the critical point because the electric power is generated and conducted to power system through these windings. To cool down the heat emitted from generator winding during its operation, a majority of generators use de-mineralized water characterized by high cooling efficiency. Contrary to such the excellent cooling efficiency, however, the damaged bar insulations attributed to the absorption of cooling water in the generator stator winding lead to highly time- and cost consuming efforts as well as to service deterioration due to unexpected forced outage of generator. It is described that the new design of water absorption sensor using cross capacitance for generator in power plant in order to increase the reliability of water absorption diagnostics for generator stator bar insulation.

The Study on Evaluating Performances of Lab Sacle-Advanced $A_{2}O$ with Changing System Using Biofilm Process (생물막 담체를 이용한 실험실 규모 $A_{2}O$공법의 시스템 변형에 따른 고도처리 성능 평가에 관한 연구)

  • Kim, Min-Sik;Kang, Gu-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.209-218
    • /
    • 2012
  • Recently, as reinforced water quality standards for wastewater has been announced, more efficient and more powerful wastewater treatment processes are required rather than the existing activated sludge process. In order to meet this demands, we evaluate Task 1-4 about lab scale $A_{2}O$ process using biofilm media. Task 1, 2, and 3 use 'Module A' which has 4 partitions (Anoxic/Anerobic/Oxic/Oxic). Task 4 uses 'Module B' which has 2 partitions including a denitrification reactor with an Inclined plug flow reactor (IPFR) and a nitrification reactor with biofilm media. The denitrification reactor of Module B is designed to be upward flow using IPFR. The result of evaluating at each Task has shown that attached growth system has better capacity of removal efficiency for organic matter and nitrogen with the exception of phosphorus. Task 4 which has the most outstanding removal efficiency has 90.5% of $BOD_{5}$ removal efficiency, 97.8% of ${NH_4}^{+}-N$ removal efficiency, 65% of T-N removal efficiency and 92% of T-P removal efficiency with additional chemical phosphorus removal system operated at HRT 9hr, Qi:Qir 1:2, and BOD/T-N ratio 2.7.

Effects of Sources and Quality of LED Light on Response of Lycium chinense of Photosynthetic Rate, Transpiration Rate, and Water Use Efficiency in the Smart Farm

  • Lee, Seungyeon;Hong, Yongsik;Lee, Eungpill;Han, Youngsub;Kim, Euijoo;Park, Jaehoon;Lee, Sooin;Jung, Youngho;You, Younghan
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.2
    • /
    • pp.171-177
    • /
    • 2019
  • Smart farm is a breakthrough technology that can maximize crop productivity and economy through efficient utilization of space regardless of external environmental factors. This study was conducted to investigate the optimal growth and physiological conditions of Chinese matrimony vine (Lycium chinense) with LED light sources in a smart farm. The light source was composed of red+blue and red+blue+white mixed light using a LED system. In the red+blue mixed light, red and blue colored LEDs were mixed at ratios of 1:1, 2:1, 5:1, and 10:1, with duty ratios varied to 100%, 99%, and 97%. The experimental results showed that the photosynthetic rate according to the types of light sources did not show statistically significant differences. Meanwhile, the photosynthetic rate according to the mixed ratio of the red and the blue light was highest with the red light and blue LED ratio of 1:1 while the water use efficiency was highest with the red and blue LED ratio of 2:1. The photosynthetic rate according to duty ratio was highest with the duty ratio of 99% under the mixed light condition of red+blue+white whereas the water use efficiency was highest with the duty ratio of 97% under the mixed light of red+blue LED. The results indicate that the light source and light quality for the optimal growth of Lycium chinense in the smart farm using the LED system are the mixed light of red+blue (1:1) and the duty ratio of 97%.

A study on an improvement of indoor cooling tower efficiency (지하역사 실내형 냉각탑 성능개선 연구)

  • Bae, Sung-Joon;Hwang, Sun-Ho;Shin, Chang-Hun;Pyo, Soo-Chul
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1726-1735
    • /
    • 2008
  • Seoulmetro has operated the air cooling equipment for 57 stations to improve services focused on our customers who use Seoulmetro during the summer season and has established every year. However, a new set of problems has arisen with the cooling tower to support a heat exchange of cooling water. The most important matter is loss of efficiency in the cooling tower. The leading cause of this problem is that we use an indoor type. As the cooling tower room is located in the underground of the city because of the residents near the station. Therefore It is difficult to establish the cooling tower on the ground. But it is unsuitable for the location requirements of the underground type because it has a limited space to set up the air cooling equipment, for example, the cooling tower and a ventilating opening. As a result of such an unfavorable condition, the cooling tower doesn't work efficiently and the warmth of cooling water because of insufficiency of a heat exchange and a refrigerator's technical obstacle such as a high-temperature and a high-pressure has arisen. To prevent this situation, the operator tend to reduce refrigerant. Accordingly, the efficiency of the air conditioning is getting lower and lower. Study wishes to analyze the matter to improve indoor cooling tower efficiency and recommend a best practice for a person who manage the establishment.

  • PDF

Assessment & Estimation of Water Footprint on Soybean and Chinese Cabbage by APEX Model (APEX 모형을 이용한 밭작물(콩, 배추) 물발자국 영향 평가)

  • Hur, Seung-Oh;Choi, Soonkun;Hong, Seong-Chang
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.3
    • /
    • pp.159-165
    • /
    • 2019
  • BACKGROUND: The water footprint (WF) is an indicator of freshwater use that appears not only at direct water use of a consumer or producer, but also at the indirect water use. As an indicator of 'water use', the water footprint includes the green, blue, and grey WF, and differs from the classical measure of 'water withdrawal' because of green and grey WF. This study was conducted to assess and estimate the water footprint of the soybean and Chinese cabbage. METHODS AND RESULTS: APEX model with weather data, soil and water quality data from NAS (National Institute of Agricultural Sciences), and farming data from RDA (Rural Development Administration) was operated for analyzing the WF of the crops. As the result of comparing the yield estimated from APEX with the yield extracted from statistic data of each county, the coefficients of determination were 0.83 for soybean and 0.97 for Chinese cabbage and p-value was statistically significant. The WFs of the soybean and Chinese cabbage at production procedure were 1,985 L/Kg and 58 L/Kg, respectively. This difference may have originated from the cultivation duration. The WF ratios of soybean were 91.1% for green WF and 8.9% for grey WF, but the WF ratios of Chinese cabbage were 41.5% for green WF and 58.5% for grey WF. CONCLUSION: These results mean that the efficiency of water use for soybean is better than that for Chinese cabbage. The results could also be useful as an information to assess environmental impact of water use and agricultural farming on soybean and Chinese cabbage.

Statistical Analysis on Non-Household Unit Water Use for Business Categories (비가정용수의 업종별 사용량 원단위 및 통계적 특성 분석)

  • Lee, Doojin;Kim, Juwhan;Kim, Hwasoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4B
    • /
    • pp.385-396
    • /
    • 2009
  • Non-household unit water use for each type of business are estimated in this study. The business types are subdivided into forty based on nine categories by the national industrial standard classification, such as office, commerce, public bathing, public water use etc. Correlation analysis and analysis of variance (ANOVA) are applied to obtain statistical characteristics between industrial water use data, surveyed in six cities including Nonsan, Seosan and the National Statistical Bureau and site area, employees number etc. for each detailed business area. As the proposed non-household unit water uses are compared with five surveyed data in USA, it is shown that almost of water uses per unit area are less than those in USA. Non-household unit water uses of 25% cumulative probability water use recommended as efficiency benchmarks among surveyed data in Korea are also less than those in USA. Especially, in the case of water use in school, the average and the range are similar results showing water use range between 0.4 and 6.2 ($l/m^2/day$) as liter per capita day per an unit area, also water use range between 11.9 to 64.0 (l/student/day) as liter per capita day per a person. From the result of correlation analysis with internal and exogenous affecting factors on non-household water use, it can be concluded that a unit area is most appropriate factor as a standard of non-household unit water use. In case of water use in educational business, the number of students including staffs is more correlated than site ares with water use for the settled water consumption tendency. Although the increase and decrease of educational institutes, retail/wholesale store and restaurants are shown remarkable by the temperature as a representative factor, low correlations are shown in water use fluctuation in lodging house and hospital.

Drivers of Crop Productivity and Resource Use Efficiencies in Apple between Western and Eastern States in the US

  • Kim, Soo-Hyung
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2015.08a
    • /
    • pp.18-28
    • /
    • 2015
  • Apple is cultivated under various climatic conditions in many parts of the world. Better understanding of how climate, genotype, soil, and management factors interact to determine crop productivity will improve our ability to optimize crop selection, management strategies, and resource use efficiencies. We developed and applied a physiology-based apple canopy model to evaluate how climatic factors and crop phenotypes interact to determine biomass accumulation, radiation use efficiency (RUE), and water use efficiency (WUE) at multiple production sites between western and eastern states of the US including WA, CA, NY, WV, and PA. Our results indicate that solar radiation is a dominant factor limiting biomass production in the eastern states while VPD is the primary factor governing crop water use across eastern and western states during the peak growing season. Crop RUE and WUE were strongly correlated in the western states but not in the eastern states while VPD showed highly negative correlation with both RUE and WUE across all locations. The RUE improved with increasing fraction of diffuse radiation ($f_{df}$) and the $RUE-f_{df}$ relationships revealed distinctive responses between western and eastern states. Overall, the eastern locations exhibited slightly higher RUE and WUE than the western locations. However, overall productivity and total water use were greater in the western states. A clear decline of productivity with increasing temperature and afternoon VPD past an optimum was predicted in the western locations but this pattern was less clear in the eastern locations. We also discuss potential phenotypes with specific physiological and morphological traits that are differentially suitable for western and eastern locations. Our results provide plausible, spatially explicit explanations and insights to disentangle the complex relationships between crop productivity, resource use efficiencies, phenotype, and climate drivers in apple grown in the US.

  • PDF

On the Recycling Substances and a Clean Technology Development for the Treatment of Mixed Acid Waste Water with Ozone (오존을 이용한 혼산폐수처리에 관한 청정기술개발 및 재이용 물질 회수에 관한 연구)

  • 김재우
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.2
    • /
    • pp.34-40
    • /
    • 2000
  • In the tungsten industry, molybdenum wire which used as the center supporter for coil shape tungsten wire was removed. Nitric acid dissolution method which used prevalently up to the present, takes nitric acid as major component and use noxious material such as sulfuric acid and hydrochloric acid remove molybdenum wire which used as center supporter by dissolve selectively within the range of no damage on tungsten wire. Mixed acid waste water occurred to the process were difficult to be decomposed by the conventional methords. This mixed acid waste water was treated by ozone, and It was obtained using possible by-product through the treatment waste water. For the three reactors with the same volume ; Blank reactor, Disturbance plate reactor, Packed-bed reactor ; the results were as follows : For the blank reactor COD removal efficiency in the pH = 4 (HRT : 6hr) was 28.5%, COD removal efficiency in the pH = 7 (HRT : 6hr) was 28.6%, and COD removal efficiency in the pH = 10 (HRT : 6hr) was 27.8%. For the disturbance plate reactor COD removal efficiency in the pH = 4 (HRT : 6Min.) was 86.5%, COD removal efficiency in the pH =7 (HRT : 6Min.) was 84.4%, and COD removal efficiency in the pH = 10 (HRT : 60Min.) was 86.8%. For the packed-bed reactor COD removal efficiency in the pH = 4 (HRT : 40Min.) was 76.0%, COD removal efficiency in the pH = 7 (HRT : 40Min.) was 81.3%, and COD removal efficiency in the pH = 10 (HRT : 40Min.) was 84.6%. After O3 treatment using possible by-product(Na2SO4) was 150g/ℓ.

  • PDF

Priority Analysis for Agricultural Water Governance Components by Using Analytic Network Process(ANP) (ANP 기법 활용 농업용수 거버넌스 구성요인 우선순위 분석)

  • Lee, Seulgi;Choi, Kyung-Sook
    • Journal of Korean Society of Rural Planning
    • /
    • v.29 no.4
    • /
    • pp.27-34
    • /
    • 2023
  • Recently, worldwide to respond to climate change and secure sustainability. Korea aimed to increase water use efficiency by implementing integrated management according to the water management unification policy. Therefore, the necessity of establishing and operating governance is expanding to ensure the sustainability of agricultural water. In this study aims to evaluate the importance of agricultural water governance components and provide essential data for the participation of stakeholders in the efficient use of agricultural water in Korea. For this study, a total of 19 respondents to the ANP survey for this study were composed of experts in agricultural water and governance in Korea. As a result, the ranking for the main components was in the order of law, policy, and systems(0.222), core subjects(0.191), information sharing and communication(0.180), budget support(0.178), mutual learning(0.124), and external experts(0.105). The most important components for the operation of agricultural water governance are laws, policies, and systems. Since Korea's agricultural water management is a public management system, national standards are considered the first priority. This study, which is the purpose of the agricultural water governance model, evaluated the importance of the constituent components for participating in demand management with a sense of responsibility. Moreover, if agricultural water governance is expanded nationwide by reflecting agricultural and water resource policies in the future, it is believed that positive effects can be achieved in increasing utilization efficiency and securing sustainability through agricultural water saving.