• 제목/요약/키워드: Water treatment System

검색결과 2,440건 처리시간 0.03초

Development of Intelligent Control Module with ANSI/EIA 709.1 for Water Treatment Facility

  • Hong, Won-Pyo
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2003년도 학술대회논문집
    • /
    • pp.243-249
    • /
    • 2003
  • With distribution industrial control system, the use of tow cost to achieve a highly reliable and safe system in real time distributed embedded application is proposed. This developed intelligent node is based on two microcontrollers, one for the execution of the application code, also as master controller for ensuring the real time control & the logic operation with PLD and other for communication task and the easy control execution, i.e., I/O digital input, digital output and interrupting. This paper also presents where the case NCS(Networked control system) with LonTalk protocol is applied for the filtration process control system of a small water treatment plant.

  • PDF

물 자원 생산을 위한 Coal Seam Gas Water Management Study의 평가 및 분석 2. 처리기술 예측 및 병합 시스템 설계 (Assessment and Analysis of Coal Seam Gas Water Management Study for Water Resource Production 2. Prediction of Treatment Technology and Design of Co-treatment System)

  • 신춘환
    • 한국환경과학회지
    • /
    • 제24권12호
    • /
    • pp.1629-1637
    • /
    • 2015
  • To develop various usable water from coal seam gas (CSG) water that needs to be pumped out from coal seams for methane gas production, a feasibility study was carried out, evaluating and analysing a recent report (Coal Seam Gas Water Management Policy 2012) from Queensland State Government in Australia to suggest potential CSG water treatment options for fit-for-purpose usable water production. As CSG water contains intrinsically high salinity-driven total dissolved solid (TDS), bicarbonate, aliphatic carbon, $Ca^{+2}$, $Mg^{+2}$ and so on, it was found that appropriate treatment technologies are required to reduce the hardness below 60 mg/L as $CaCO_3$ by setting the reduction rates of $Ca^{+2}$, $Mg^{+2}$ and Na+ concentrations, as well as TDS reduction. Also, Along with fiber filtration and membrane separation, an oxidation degradation process was found to be required. Along with salinity reduction, as CSG water contains organic compounds (TOC: 248 mg/L, $C_6-C_9$: <20 mg/L and $C_{10}-C_{36}$: <60 mg/L), compounds with relatively high molecular weights ($C_{10}-C_{36}$) need to be treated first. Therefore, this study suggests a combined system design with filtration (Reverse osmosis) and oxidation reduction (electrolysis) technologies, offering proper operating conditions to produce fit-for-purpose usable water from CSG water.

상수처리과정 중 제초제 molinate의 제거 (Removal of Herbicide Molinate during treatment Processes for Drinking Water)

  • 박주황;박종우;김종수;김장억
    • Applied Biological Chemistry
    • /
    • 제45권3호
    • /
    • pp.145-151
    • /
    • 2002
  • 수도용 제초제로 널리 사용되는 molinate는 물에 대한 용해도가 매우 크기 때문에 상수원수로 유입될 가능성이 있다. 상수원수에 molinate가 유입되었을 경우 상수처리과정 중에서의 제거효율을 알아보기 위하여 본 연구를 수행하였다. 상수처리과정중 응집제로 poly aluminium chloride(PAC)를 사용하였을 경우에는 molinate는 거의 제거되지 않는 것으로 나타났다. 소독제로 NaCIO를 사용한 염소처리과정에서는 4시간까지 염소투입량을 증가시켜 줌에 따라서 $20.0%{\sim}39.8%$의 제거율을 나타내었다. 고도정수처리과정에 해당되는 오존접촉과정에서는 접촉시간을 1시간까지 두었을 때 $28.9%{\sim}$58.2%의 제거율을 나타내었다. 활성탄처리과정의 경우는 입상활성탄의 첨가량 달리 하였을 때 30분의 접촉시간이 지난 후 90%이상의 제거효율을 나타내었으며, 1시간 후에는 완전히 제거되는 것으로 나타났다. 활성탄의 형태에 따른 제거효율은 비표면적이 더 널은 분말활성탄이 입상활성탄을 사용하였을 때보다 다 높게 나타났다. 고도정수처리과정인 오존접촉과 활성탄처리과정을 연속적으로 행한 결과 비교적 짬은 처리 시간에도 불구하고 $93.9%{\sim}100% 제거되었다. 상수처리의 각 과정별 molinatr치 제거율을 계산하여 모식화한 결과 전체 system에서의 효율은 99.5%로 나타나 수중 molinate의 제거에 상당히 효율적인 것으로 나타났다.

개발도상국 중국의 하수처리장 운영.관리능 평가 (O&M Evaluating for Sewage Treatment Plants in China as a Developing Country)

  • 김연권;문용택;김홍석;김지연
    • 환경위생공학
    • /
    • 제21권3호
    • /
    • pp.27-36
    • /
    • 2006
  • For the last 20 years, China has transformed itself from a rural economy into an industrial giant, averaging over 8 % annual growth of GDP. Unfortunately, this rapid growth has taken a significant toll on its natural resource base as well, particularly water resources. These problems have been exacerbated by a low level of sewage treatment technology and by the operating and maintenance (O&M). In case of urban areas, most big cities in China have a well functioning sewage system comprised of sewers and sewage treatment plants (STPs). Nevertheless, the existing STPs are still not capable of properly treating the sewage, both quantitatively and qualitatively. The rural areas in China cover a large land, with two-third of the nation's population. The low educational and poor economic states make it hard to process self-protection and management. In the surveyed area in Henan, there was no STPs put into use as of 2004, and the sewer lines are not well organized. The big issue for the currently planned STPs is the collection system not included in the plans.

Effect of Periodic Water-back-flushing Time ad Period in Water Treatment by Tubular Alumina Ceramic Microfiltration

  • Park, Jin-Yong;Lee, A-Reum
    • Korean Membrane Journal
    • /
    • 제10권1호
    • /
    • pp.33-38
    • /
    • 2008
  • In this study periodic water-back-flushing using permeate water was performed to minimize membrane fouling and to enhance permeate flux in tubular ceramic micro filtration system for Gongji stream water treatment in Chuncheon city. The filtration time (FT) 2 min with periodic 6 sec water-back-flushing showed the highest value of dimensionless permeate flux ($J/J_0$), and the lowest value of resistance of membrane fouling ($R_f$), and we acquired the highest total permeate volume ($V_T$) of 7.44L. Also in the results of BT effect at fixed FT 10 min, BT (back-flushing time) 20 sec showed the lowest value of $R_f$ and the highest value of $J/J_0$, and we could be obtained the highest $V_T$ of 8.04 L. Consequently FT 10 min and BT 20 sec could be the optimal condition in Gongji stream water treatment. Then the average rejection rates of pollutants by our tubular ceramic MF system were 93.8% for Turbidity, 20.7% for $COD_{Mn}$, 39.2% for $NH_3$-N and 31.5% for T-P.

콘크리트 표면처리방법에 따른 금속용사 피막의 투수성 평가에 관한 실험적 연구 (An Experimental Study on the Permeability Evaluation of Metal Spray System by Metal Spray Coating Surface Treatment)

  • 박진호;장현오;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 추계 학술논문 발표대회
    • /
    • pp.50-51
    • /
    • 2016
  • Ozone is a strong oxidizing materials in the advanced water treatment facilities. However, due to such a strong oxidation, Ozone eroded waterproofing/corrosion on the concrete surface and caused performance degradation. Therefore, in this study, permeability experiment of metal spraying system by concrete surface treatment was conducted.

  • PDF

MF Membrane Application for Water Treatment in Japan

  • Okazaki, Minoru
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1995년도 추계 총회 및 학술발표회
    • /
    • pp.80-93
    • /
    • 1995
  • Membrane Technology, which has been in use for over twenty five years, has established itself as one of the principle separation methods. With improved technology, Reverse Osmosis ("RO") has been applied to large volume water treatment facilities. UF and MF Membrane Technology has, up until recently, been applied to small scale water treatment facilities. The fouling of membrane has restricted the growth of Membrane Technology in Water Treatment. Membrane fouling compound found in water causes the loss of flux across the membrane by absorbing to membrane and plugging their pores. Various methods have been used in the reduction and prevention of membrane fouling. For RO, a conventional pre-treatment system removes the pollutants, preventing the function decline of RO membrane by keeping SDI < 4 as the standard condition of feed water. UF and MF Membrane Technology that must have pre-treatment function within itself, are required to keep its ability not to be influenced by fouling.y fouling.

  • PDF

Application of ozone treatment in cooling water systems for energy and chemical conservation

  • Ataei, Abtin;Mirsaeed, Morteza Ghazi;Choi, Jun-Ki;Lashkarboluki, Reza
    • Advances in environmental research
    • /
    • 제4권3호
    • /
    • pp.155-172
    • /
    • 2015
  • In this study, a complete set of recirculating cooling water system and the required instruments were built in a semi-industrial-scale and a 50 g/h ozone generation plant and a chlorine system were designed for cooling water treatment. Both chlorination and ozonation treatment methods were studied and the results were analyzed during two 45-days periods. The concentrations of ozone and chlorine in recirculating water were constant at 0.1 mg/lit and 0.6 mg/lit, respectively. In ozone treatment, by increasing the concentration cycle to 33%, the total water consumption decreased by 26% while 11.5% higher energy efficiency achieved thanks to a better elimination of bio-films. In case of Carbon Steel, the corrosion rate reached to 0.012 mm/yr and 0.025 mm/yr for the ozonation and chlorination processes, respectively. Furthermore, consumptions of the anti-corrosion and anti-sedimentation materials in the ozone cooling water treatment were reduced about 60% without using any oxidant and non-oxidant biocides. No significant changes in sediment load were seen in ozonation compared to chlorination. The Chemical Oxygen Demand of the blow-down in ozonation method decreased to one-sixth of that in the chlorination method. Moreover, the soluble iron and water turbidity in the ozonation method were reduced by 97.5% and 70%, respectively. Although no anaerobic bacteria were seen in the cooling water at the proper concentration range of ozone and chlorine, the aerobic bacteria in chlorine and ozone treatment methods were 900 and 200 CFU/ml, respectively. The results showed that the payback time for the ozone treatment is about 2.6 years.