• Title/Summary/Keyword: Water table rising

Search Result 17, Processing Time 0.023 seconds

Investigation for TCE Migration and Mass Discharge Changes by Water Table Rising in Porous Media (투수성 매질 내에서의 지하수위 상승에 따른 TCE 거동특성 및 오염물 이동량 변화 연구)

  • Lee, Dong Geun;Moon, Hee Sun;Lee, Kang-Kun
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.2
    • /
    • pp.27-35
    • /
    • 2013
  • In this study, three dimensional and two dimensional laboratory experiments were conducted to investigate the effect of water table rising on DNAPL migration, contaminants mass discharge ($M_d$), and residual NAPL distribution. The accumulation of TCE in unsaturated zone was observed in both two and three dimensional experiments. This implies DNAPL sources could exist in unsaturated zone at contaminated sites. It has been investigated that the TCE concentration is proportional to the areal ratio of residual TCE. This means the residual TCE obviously could affect the TCE concentration in aquifer system. The results of the two-dimensional experiment indicated that the contaminant sources in unsaturated zone could lead the $M_d$ increasing with water table rising and the source zone heterogeneity could also highly affect the $M_d$.

Behavior of double deck tunnel due to feature change and variation of ground water table (다목적 복층터널의 기능전환과 지하수위 변화에 따른 거동분석)

  • Park, No-Hyeon;Kim, Ho-Jong;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.6
    • /
    • pp.581-591
    • /
    • 2016
  • Several attempts to construct multi-purpose tunnel for both road and waterway have been made. The multi-purpose tunnel is mainly used as a road tunnel, however it is transferred to waterway to control flood during rainy season. The planning of the multi-purpose tunnel is recognized as cost-effective way of infrastructure construction. In case of the multi-purpose tunnel constructed beneath groundwater table, seasonal fluctuation of groundwater table and repeated flow in the tunnel may cause long-term deterioration of the tunnel system. In this study, the behavior of multi-purpose tunnel in view of groundwater table or flow in the tunnel is investigated using model test and numerical modeling method. The results have shown that rising of groundwater table caused buoyant force to the tunnel and the fluctuation of rainwater in the tunnel generated loosening of surrounding ground. It is recommended to evaluate the effect of the long-term water pressure variation in the design of a multi-purpose tunnel.

A Study on the Effects of Temperature Rise of Irrigation Water Passed Through the Warm Water Pool. (온수지에 의한 관개용수의 수온상승 효과에 관한 연구)

  • 연규석;최예환
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4323-4337
    • /
    • 1977
  • The study was to estimate the effect of the rise of water temperature in the warm water pool and to make contribution to the establishment of reducing to a damage of cool water as well as to the planning for warm water pool. This observation was performed in Wudu warm water pool located at Wudu-Dong of Chuncheon for two years from 1975 to 1976. The results were showed as follows; 1. The daily variation of water temperature was the least for inset (No.1; 0.6$^{\circ}C$) the second for middle overflow (No2: 3$^{\circ}C$, No.3; 2.3$^{\circ}C$) and another for outflet (No.4; 3.6$^{\circ}C$, No.5; 3.8$^{\circ}C$) And the highest reaching time of water temperature in each block was later about 1 hour than the time at which air temperature happend in the daytime. So, the variation of water temperature was sensitive to the variation of air temperature 2. The monthly variation of water temperature at each measuring point was plotted to be increased with increase in air temperature till August (Mean monthly rising degree; No.1; 1.15$^{\circ}C$, No.2; 1.7$^{\circ}C$, No.3; 1.73$^{\circ}C$, No.4; 2.08$^{\circ}C$, No.5; 2.0$^{\circ}C$), and expressed gradually descended influence upon water temperature after August. 3. The mean temperature of inflow folwed in warm Water pool was 7.5∼12.5$^{\circ}C$, and outflow temperature was described as 13.4∼22.5$^{\circ}C$ to be climbed. And So, the rising interval of water temperature was shown as 6.7∼10.4$^{\circ}C$. 4. The correlation between the rising of water temperature and the weather condition was found out highly significant. As the result, their correlation coefficents of water temperature depending on mean air temperature, ground temperature, wind velocity and relative humidity were to be 0.93, 0.90, - 0.83 and 0.71 respectively. But there was no confrimation of the correlation on the clouds, sunlight time, volume of evaporation, and heat capacity of horizontal place. 5. The water temperature of balance during the period of rice growing in Chuncheon district was shown as table 10, and the mean of whole period was calculated as about 23.7$^{\circ}C$. 6. The observed value of the outflow temperature passed through the warm water pool was higher than that of computed, the mean difference between two value was marked as 1.15$^{\circ}C$ for blockl, 1.18$^{\circ}C$ for block2, and 0.47$^{\circ}C$ for block3, respectivly. Therefore, the ratio on the rising degree between the observed and computed were shown as 53%, 44%, and 18%, mean 38% through each block warm water pool (referring item $\circled9$ of table 11,12, and 13). Accordingly, formula (4) in order to fit for each block warm water pool was transfromed as follow; {{{{ { theta }_{w } - { theta }_{ 0} =[1-exp LEFT { { 1-(1+2 varphi )} over {cp } CDOT { A} over { q} RIGHT } ] TIMES ( { theta }_{w } - { theta }_{ 0}) TIMES C }}}} Here, correction coefficinent was computed 1.38, and being substituted 1.38 for C in preceding formula, the expected water temperature will be calculated to be able to irrigate the rice paddy. As the result, we can apply the coefficient in order to plan and to construct a new warm water pool.

  • PDF

Estimation of Groundwater Table using Ground Penetration Radar (GPR) in a Sand Tank Model and at an Alluvial Field Site (실내 모형과 현장 충적층에서 지하투과레이더를 이용한 지하수면 추정)

  • Kim, Byung-Woo;Kim, Hyoung-Soo;Choi, Doo-Houng;Koh, Yong-Kwon
    • The Journal of Engineering Geology
    • /
    • v.23 no.3
    • /
    • pp.201-216
    • /
    • 2013
  • Ground penetrating radar (GPR) surveys were conducted in a sand tank model in a laboratory and at an alluvial field site to detect the groundwater table and to investigate the influence of saturation on GPR response in the unsaturated zone. In the sand tank model, the groundwater table and saturation in the sand layer were altered by injecting water, which was then drained by a valve inserted into the bottom of the tank. GPR vertical reflection profile (VRP) data were obtained in the sand tank model for rising and lowering of the groundwater table to estimate the groundwater table and saturation. Results of the lab-scale model provide information on the sensitivity of GPR signals to changes in the water content and in the groundwater table. GPR wave velocities in the vadose zone are controlled mainly by variations in water content (increased travel time is interpreted as an increase in saturation). At the field site, VRP data were collected to a depth of 220 m to estimate the groundwater table at an alluvial site near the Nakdong river at Iryong-ri, Haman-gun, South Korea. Results of the field survey indicate that under saturated conditions, the first reflector of the GPR is indicative of the capillary fringe and not the actual groundwater table. To measure the groundwater table more accurately, we performed a GPR survey using the common mid-point (CMP) method in the vicinity of well-3, and sunk a well to check the groundwater table. The resultant CMP data revealed reflective events from the capillary fringe and groundwater table showing hyperbolic patterns. The normal moveout correction was applied to evaluate the velocity of the GPR, which improved the accuracy of saturation and groundwater table information at depth. The GPR results show that the saturation information, including the groundwater table, is useful in assessing the hydrogeologic properties of the vadose zone in the field.

The Canal of China·Northern Europe and the Pan-Korea Grand Waterway Development (중국·북유럽 운하와 한반도 대운하 건설)

  • PARK, Heuidoo
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.1
    • /
    • pp.15-27
    • /
    • 2011
  • The canals of China·Northern Europe are different from those of Korea in the phases of the times and physical environment as follows. As the coefficient of river regime is high and the slopes of river is high in our country, the sediments are much deposited on the floor and river channels are meandered and the depth of water are low. So we should dredge the river floor and should construct the dams and lock gates. These will cause streams to be late and to be flooded. The rising and falling of groundwater tables may be fatal to the buildings. The ecosystem will be ruined by water pollution and rising of water levels. We are concerned about the economy of the canals, the low velocity of the canals, reduction of the transportation cost, transshipment cost and terminal cost, tourism·leisure-typed waterway and extreme cost of waterway development. It is proper for us to put in good order and control waterway simply by means of annual schedule, not to construct canal.

Experiments on the GPR Reposnse of the Organic Hydrocarbons (유류오염물질의 GPR 반응에 대한 모델 실험 연구)

  • 김창렬
    • Economic and Environmental Geology
    • /
    • v.37 no.2
    • /
    • pp.185-193
    • /
    • 2004
  • A physical model experiment was conducted using a sand and gravel-filled tank model, to investigate the influence on the GPR response of LNAPL vapor phase effects in the unsaturated zone and of residual phase of LNAPL trapped in the saturated zone. Background measurements of GPR were made with only water in the tank using a fluctuating water table model. Gasoline was, then, injected into the bottom of the model tank to simulate a subsurface discharge from a leaking pipe or tank at depth, obtaining GPR data with rising and lowering of water table. Results from the experiment show the GPR sensitivity to the changes in the moisture content in the vadose zone and its effectiveness for monitoring minor fluctuation of the water table. The results also demonstrate a potential of GPR for monitoring possible vapor phase effects of volatile hydrocarbons in the vadose zone as a function of time, and for detecting the effects of residual phase of hydrocarbons in the water saturated system. In addition, the results provide the basis for a strategy that has the potential to successfully detect and delineate residual LNAPL contamination in the water-saturated system at field sites where the conditions are similar to those simulated in the physcial models described herein.

A Study on the relationship between the body chages in microgravity and Su-Seung-Hwa-Gang in Korean medicine. (미세중력환경에서의 인체의 생리적 변화와 수승화강(水升火降)과의 연관성에 대한 고찰)

  • Jung, Jae Hun;Kang, Han Joo;Bae, Jae Ryong
    • Journal of Korean Medical Ki-Gong Academy
    • /
    • v.15 no.1
    • /
    • pp.89-108
    • /
    • 2015
  • Objects : the relationship between the body changes in microgravity and Su-Seung-Hwa-Gang(body water rising and heat falling) in Korean medicine. Methods : research of papers about the body changes in microgravity and Su-Seung-Hwa-Gang in Korean medicine. Conclusions : In microgravity, there are changes in cardiovascular system and sympathetic nerve system(SNS). A change in the SNS during simulated microgravity could induce several physiological changes. It is associated with Su-Seung-Hwa-Gang in Korean medicine.

Slope Stability Analysis Considering Seepage Conditions by FEM Using Strength Reduction Technique (강도 감소법에 의한 지하수위를 고려한 FEM 사면안정해석)

  • 김영민
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.97-102
    • /
    • 2004
  • In this paper, a finite element based method far determining factor of safety of slopes which has certain advantages over conventional limit equilibrium methods is described. Particularly, the slope failure behaviour considering different seepage conditions is produced by finite element method using strength reduction technique. It is shown that both the failure mechanism and the safety factor that are analyzed by the FEM using strength reduction technique are an effective means of slope stability analysis. And the stability of a slope with rising water table and rapid drawdown are analyzed and the results are compared with the simplified Bishop Method of the Limit Equilibrium Methods.

Evaluation of Zoning Effect on Seepage Flow in CFGD using Centrifuge Modeling (원심모형시험을 이용한 단면 구획이 CFGD의 침투 거동에 미치는 영향 평가)

  • Kim, Kyeong-Hwan;Choo, Yun-Wook;Kim, Dong-Soo;Park, Han-Kyu;Shin, Dong-Hoon;Cho, Sung-Eun;Lim, Eun-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.278-287
    • /
    • 2009
  • This thesis studied effect of zoning on seepage flow in concrete faced gravel-fill dam (CFGD) designed to have selected main rockfill or gravel-fill zone, Zone 3Bs with higher permeability to enhance the safety against accidental water infiltration into the dam. For this purpose, centrifuge model tests with two cases, with and without Zone 3Bs, were performed in order to investigate the necessity and the function of Zone 3Bs. Model dams were made by soil samples with modified coefficients of permeability and concrete faced slab was simulated with aluminum alloy. Water infiltration was simulated by rising water table over cracks on the facing. Behaviors of model dams were measured by LVDTs, strain gages, pore water pressures and cameras. Form the results of centrifuge tests, it was found out that the Zone 3Bs acts as a protection of main gravel-fill zone by inducing flow paths for infiltrated water into it as well as by draining off the infiltrated water out of the dam in a short time.

  • PDF

Effect of Soil Salinity and Soil-wetting by Summer-Rising of Water Table on the Growth of Fruit Trees Transplanted at the Saemangeum Reclaimed Tidal Land in Korea (새만금간척지의 토양염농도와 지하수위의 하계 상승이 이식한 과수의 생육에 미치는 영향)

  • Sohn, Yong-Man;Jeon, Geon-Yeong;Song, Jae-Do;Lee, Jae-Hwang;Kim, Doo-Hwan;Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.1
    • /
    • pp.8-15
    • /
    • 2010
  • The effect of soil salinity and soil-wetting by rise of water table on the growth of fruit trees was studied to obtain information for orchard establishment in the Saemangeum reclaimed tidal land. Survival ratio of trees was 85%for grape, 31%for fig, 15%for apple and pear, and near zero for peach and blueberry. Wet injury induced by water-logged or flooded condition, rather than salt injury(soil EC was lower than 3.0dS $m^{-1}$ during growing period) is thought to be more responsible for low survival ratio of fruit trees transplanted in Saemangeum area. During the summer raining season in the reclaimed areas, the soil salinity tends to be decreased by natural rainfall effect, and the rainfall acceptable capacity(RAC) of soils dramatically is reduced(10-24 mm) as rainfall is continued to occur. In spite of high hydraulic conductivity(121 cm $day^{-1}$) of soils across the area, low RAC of soils might be due to high soil saturation and elevated water table during summer raining season. Therefore, the installation of effective drainage system should be the primary factor determining successful establishment of orchard in the Saemangeum reclaimed tidal land.