• Title/Summary/Keyword: Water system

Search Result 18,206, Processing Time 0.048 seconds

A Study on the Transition & Expectation through Survey for Existing Building and Engineer's Opinion (기존 사무소 건물 및 설비전문가 조사를 통한 설비시스템의 변화와 전망에 대한 연구)

  • Lee, Gwan-Ho;Kim, Nam-Gyu;Park, Jin-Chul;Rhee, Eon-Ku
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.2
    • /
    • pp.63-69
    • /
    • 2005
  • This study is the survey of a transition procedure of building services systems(heat source, HVAC, water supply) through the survey of existing office buildings, building design documents. The preference & major consideration of system selection is the engineer's opinions. The results of this survey can be used in selection of building services system design. In this survey, "Hot & cold water generator system" and "single duct CAV+FCU system", "Elevated water tank system" are selected. The most important consideration in system selection is the energy saving in heat source system, and comfort in HVAC system, and water pressure in water supply system. They prefer "steam boiler+absorption chiller system" for heat source system, "steam boiler+ice thermal storage system", "hot & cold water generator system", "district heating+absorption chiller system" : "single duct CAV+FCU system" and "single duct VAV+convector system" for HVAC system: and "booster pump system" for water supply system.

Water Quality Improvement System Using High Voltage Electric Field with Self-Generation System (자가 발전 시스템을 갖춘 고전압 전기장 수질개선 장치 개발)

  • Kang, Rae-Yun;Kang, Chul-Ung
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.84-89
    • /
    • 2015
  • The occurrence of algae caused by eutrophication of fresh water is a pollution source to destroy the aquatic environment. When the high voltage electric field is applied in the water, When a high voltage is applied to the electric field in the water, the algae can be broken the balance of cell membranes, and is dead. In this paper, we develop a water quality improvement system for generating an electric field having a higher energy than the zeta potential when a high voltage is applied to 4,000V. To ensure the mobility of the water quality improvement system, we designed the PV generation system using the optimal size technique that is based on the model of power lack ratio. By evaluating the output characteristics of the water quality improvement system, power generation characteristics of the PV generation system, and battery charging characteristics, we can show that the proposed system can be applicable to the water quality improvement system inhibiting the growth rate of the algae in the fresh water.

Development of Clean Water Supplying System for Greenhouse Cultivation and Convenience Water (II) - Assessment of the FDA System through a Site Application - (시설용수 및 영농편의용수 공급시스템 개발 (II) - FDA 시스템 현장적용성 평가 -)

  • Lee, Kwang-Ya;Choi, Kyung-Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.5
    • /
    • pp.101-106
    • /
    • 2009
  • The previous study developed the Filter-Disinfection-Adsorption (FDA) system to provide clean irrigation water for greenhouse cultivation as well as convenience water to farmers. In this study, the field examination was undertaken to assess performance of the FDA system. The field application was made in the suburb of Daegu, one of the large city in Korea. The study area located near by down-stream of Gum-Ho river is suffering low irrigation water quality problems with no water supply service facilities. Four water quality parameters including Suspended Solid (SS), Biological Oxygen Demand (BOD), coliform, and turbidity were selected to test the purification performance of FDA system. Also in order to improve the system, this study investigated the defects of using the FDA system through field monitoring. As results, it was found that this system can be used to supply good quality of irrigation water for greenhouse cultivation and also provide convenience water to farmers in the field areas of no water supply services.

Experimental Study on Thermal Performance of Palte-type Fresh Water Generator for applying Solar Energy Desalination System (태양에너지 해수담수화시스템에의 적용을 위한 판형 해수담수기의 열성능에 관한 실험적 연구)

  • Kim, Jeong-Bae;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.35-41
    • /
    • 2007
  • To demonstrate the desalination system, the demo-plant was scheduled to be installed. The system was planned to use solar thermal collector as heat source and PV as electricity source. For the design of the desalination demonstration system, firstly the solar thermal system would be well designed from the result between the supplied heat into the fresh water generator and the fresh water yield. The generator for demonstration system was chosen as the fresh water generator of the single stage and effect with plate-type heat exchanger using low pressure evaporation method. The test facility for the tests to reveal the relationship between the fresh water yield and the supplied heat flow rate was designed and manufactured. The maximum fresh water yield of two fresh water generators applied in this study was designed as 1.5 Ton/day. The parameters relating with the performance of fresh water generator are known as sea water inlet temperature, hot water inlet temperature, and hot water flow rate. Through the experiments, this study firstly showed detail operation characteristics of the generator and designed the solar thermal system for the demonstration system.

Walk-by Meter Reading System of Digital Water Meter Based on Ubiquitous (유비쿼터스기반 디지털 수도미터 옥외검침시스템 개발)

  • Shin, Gang-Wook;Hong, Sung-Taek;Lee, Young-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.688-693
    • /
    • 2009
  • In terms of water meter reading, the majority of 16 million houses use mechanical water meter in korea. So, a member of the utility's staff needs to access periodically the water meter and the value of the metered volume. However, due to the use of mechanical water meter, many issues have been appeared as cost, time, errors, accessibility, and readability. To settle these issues, we developed the walk-by meter reading system of digital water meter and outside indicator based on ubiquitous. And we could get the characteristics and the economical efficiency for water meter reading system. Thus, this study shows that the system can be widely used to the block system and the meter reading system for stable water supply.

Real-time Water Monitoring System for Small Water Supply Facility using High Reliable Wireless Sensor Network (고신뢰 무선센서네트워크를 이용한 실시간 수질 모니터링 시스템)

  • Kang, Hoyong;Jang, Youn-Seon
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.331-341
    • /
    • 2015
  • In this paper, real-time water quality monitoring system of small water supply facilities based on IEEE 802.15.4e-2012 DSME MAC and IEEE 802.15.4g-2012 PHY standard is presented, which is capable to acquire for highly reliable water quality information in the wide outdoor areas for effective water quality management of small water quality facilities is distributed in the long distance and remote areas. Previously, Long distance transmission is difficult in most water quality sensor module is using RS-485 protocol. But with this system, even in harsh outdoor environment, it is possible to establish a radio wave sensor in a wide area network, and not only water quality sensor shall be connected to the wireless system, but also wireless integrated management system shall provide more effective way of management of the numerous small water supply facilities spread throughout the community, so that the administrator can remotely monitor the data of water turbidity, pH, residual chlorine in the water-supply, water-level, and generate alarm to cope with risks. The management of small water facilities is done by residents will be very effective to notice water quality information of small water facilities to residents.

Energy-Saving and Environmental Evaluation of Water Supply System on Replacing Water Storage Installed Booster Pump System by Direct Connecting Booster Pump System (저수조 설치 펌프직송방식의 수도직결 증압방식 전환에 관한 에너지절약성 및 환경성 검토)

  • Lee, Chulgoo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.11 no.3
    • /
    • pp.7-12
    • /
    • 2015
  • Currently water supply system with water storage is generally applied except for small building such as single-family houses, and water supply system on replacing water storage installed system by direct connecting system has been increasing because of sanitary and energy-saving aspects. The purpose of this study is to evaluate energy-saving and environmental efficiency of direct connecting booster pump system in comparison with the water storage installed system. The architectural condition of the evaluation subject is ten-story apartment house in which sixty households live. To calculate the power consumption of the pump, the volume of water supply was determined from existing data and other data, such as head, efficiency of the pump, was the value used for general application in design office. The power consumption of the water supply pump for one day was 8.5 kWh for direct connecting booster pump system, and 22.5 kWh for water storage installed system, and the former system showed energy savings of 62% compared to the latter system. Reduced power consumption also leads to reduction of $CO_2$ emission. According to the criteria presented in the Korea Energy Management Corporation, reducing the 2,410 kg $CO_2$ emission is possible per year.

Climate change impact assessment of agricultural reservoir using system dynamics model: focus on Seongju reservoir

  • Choi, Eunhyuk
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.2
    • /
    • pp.311-331
    • /
    • 2021
  • Climate change with extreme hydrological events has become a significant concern for agricultural water systems. Climate change affects not only irrigation availability but also agricultural water requirement. In response, adaptation strategies with soft and hard options have been considered to mitigate the impacts from climate change. However, their implementation has become progressively challenging and complex due to the interconnected impacts of climate change with socio-economic change in agricultural circumstances, and this can generate more uncertainty and complexity in the adaptive management of the agricultural water systems. This study was carried out for the agricultural water supply system in Seongju dam watershed in Seonju-gun, Gyeongbuk in South Korea. The first step is to identify system disturbances. Climate variation and socio-economic components with historical and forecast data were investigated Then, as the second step, problematic trends of the critical performance were identified for the historical and future climate scenarios. As the third step, a system structure was built with a dynamic hypothesis (causal loop diagram) to understand Seongju water system features and interactions with multiple feedbacks across system components in water, agriculture, and socio-economic sectors related to the case study water system. Then, as the fourth step, a mathematical SD (system dynamics) model was developed based on the dynamic hypothesis, including sub-models related to dam reservoir, irrigation channel, irrigation demand, farming income, and labor force, and the fidelity of the SD model to the Seongju water system was checked.

Ecohydrologic Analysis on Soil Water and Plant Water Stress : Focus on Derivation and Application of Stochastic Model (토양수분과 식생의 물 압박에 대한 생태수문학적 해석 : 추계학적 모형의 유도와 적용을 중심으로)

  • Han, Suhee;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.1
    • /
    • pp.99-106
    • /
    • 2008
  • With globally increasing interests in climate-soil-vegetation system, a new stochastic model of soil water and plant water stress is derived for better understanding of the soil water and plant water stress dynamics and their role in water-controlled ecosystem. The steady-state assumption is used for simplifying the equations. The derived model is simple yet realistic that it can account for the essential features of the system. The model represents the general characteristics of rainfall, soil, and vegetation; i.e. the soil moisture constitutes the decrease form of the steady-state and the plant water stress becomes increasing with the steady state when the rainfall is decreased. With this model, further deep study for the effects of soil water and plant water stress on the system will be accomplished.

A Study on the Development of Water Quality Forecasting System in Upstream of Paldangdam (팔당댐 상류의 수질예보시스템 개발에 관한 연구)

  • Choi, Nam-Jeong;Seo, Il-Won;Kim, Young-Han;Lee, Myong-Eun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1387-1391
    • /
    • 2007
  • In this study, water quality prediction that is necessary to water quality forecasting system is performed using 2-D river analysis models RMA-2 and RAM4. RAM4 is suitable to water quality forecasting system cause it is possible to put in the pollutants as a mass type boundary condition. Instant injections of pollutants at Yongdamdaegyo Bridge in Namhangang River are simulated and the behavior of pollutant cloud is observed. The effects of water quality accident to Paldang 2 water intake plants in Paldangho Lake is analyzed with time variation. And extra flow simulation is performed for mitigation of pollution. Several cases of water quality forecasting system at home and abroad are investigated and the direction of water quality forecasting system is presented.

  • PDF