• Title/Summary/Keyword: Water suspension

Search Result 514, Processing Time 0.024 seconds

Manufacture and Application of Diamond Orifices in Abrasive Suspension Jet for Micro Machining (습식 워터 젯 정밀 절삭 가공용 다이아몬드 오리피스 제조 및 응용)

  • Kim, Youn-Chul;Park, Hee-Dong;Jho, Jae-Han;Kang, Suk-Joong L
    • Journal of Powder Materials
    • /
    • v.15 no.6
    • /
    • pp.509-513
    • /
    • 2008
  • High-pressure abrasive entrained jet have rapidly become important machining technology over the last two decades. However, suspension jet by high-pressure has been recently developed for packaging sawing. Ideally, diamond materials should be used for components in abrasive water-jet systems that are subject to high erosive conditions. Using the diamond orifices improve maintenance and extend wear part life. This paper gives insights to using an abrasive suspension jet with diamond orifice. The influences of orifice material and orifice design are evaluated.

Effects of Calcium Hydroxide/Phosphoric Acid Suspending Agents on the Characteristics of Styrene-Based Suspension Polymerized Toners (수산화칼슘/인산 현탁제가 스타이렌 기반 현탁중합토너의 특성에 미치는 영향)

  • Yu, Jae-Goang;Kim, Dae-Su
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.923-928
    • /
    • 2012
  • Optimizing a water-phase suspending system is very important to manufacture high-quality suspension polymerized toners. Therefore, in this study, the effects of the molar ratio of calcium hydroxide ($CaOH_2$)/phosphoric acid ($H_3PO_4$)(Ca/P), which were used as inorganic suspending agents, and pH of the water-phase on the characteristics of styrene-based suspension polymerized toners were mainly investigated. At first, the water-phase was fixed to neutral condition (pH=7.5) and Ca/P molar ratio was changed from 1.5:1 to 1.76:1. As a result, an ideal calcium phosphate (hydroxyapatite) was prepared at the Ca/P molar ratio of 1.73:1 and polymerized toners prepared at this condition showed good particle size distribution, circularity and charging characteristic. Based on this result, Ca/P molar ratio was fixed to 1.73:1 and pH of the water-phase was changed to weak acidic (pH=5.5) and weak basic (pH=9.5) conditions. As a result, polymerized toners prepared under the weak acidic condition showed very good particle size distribution, circularity and charging characteristic along with excellent printing quality. High-quality suspension polymerized toners could be prepared via optimizing Ca/P molar ratio and pH of the water-phase.

Numerical Study about Heat Transfer Enhancement of Water-Microparticles Suspension (물-미립자 현탁액의 난류 열전달 향상에 관한 수치해석적 연구)

  • 정세훈;손창현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.29-35
    • /
    • 2000
  • The present numerical study investigates heat transfer enhancement mechanism for suspensions of polystyrene particles in water. Numerical simulations were done for turbulent hydrodynamic fully developed flows in a circular duct with constant wall heat flux. The experimental result of microparticle suspensions show 25∼45% heat transfer enhancement over those of water. The present numerical results show the main parameter for the heat transfer enhancement of microparticle suspension in a circular duct is the change of velocity profile by the non-Newtonian fluid behavior.

  • PDF

Synthesis of Ultra-fine Calcium Phosphate Powders from Ca(OH)2 Suspension and Various Phosphoric Aqueous Solutions (Ca(OH)$_2$ 현탁액과 각종 인산 수용액으로부터 인산칼슘 초미분말의 제조)

  • 민경소;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.1
    • /
    • pp.74-82
    • /
    • 1992
  • Ultra-fine calcium phosphate powders were synthesized by the reaction of Ca(OH)2 suspension with various phosphoric aqueous solutions such as (NH4)2HPO4, H4P2O7 and H3PO4, and the characterization of powders was examined for each synthetic condition. When (NH4)2HPO4 and H3PO4 were used, hydroxyapatite powders with poor crystallinity were obtained. In the case of H4P2O7, amorphous calcium phosphate was obtained up to 0.3 mol/ι Ca(OH)2 suspension, but above the concentration, poor crystalline hydroxyapatite was produced. Crystalline phases of powders heat-treated at 80$0^{\circ}C$ were hydroxyapatite, $\beta$-tricalcium phosphate and $\beta$-tricalcium phosphate for the case of (NH4)2HPO4, H4P2O7 and H3PO4, respectively. SEM observation revealed that the shapes of synthesized powders were vigorously agglomerated spherical with the size below 100 nm, but TEM observation revealed that primary shapes of particles were rod for (NH4)2HPO4 and H3PO4 and were sphere for H4P2O7. There was no dependence of the concentration of Ca(OH)2 suspension. In the case that reaction temperature and pH of the suspension were raised, the inclination to the hydroxyapatite were remarkable. The amorphous calcium phosphate synthesized in this experiment contained water about 20% , and was crystallized to $\beta$-tricalcium phosphate at 69$0^{\circ}C$.

  • PDF

Heat Transfer Characteristics of Liquid-Solid Suspension Flow in a Horizontal Pipe

  • Ku, Jae-Hyun;Cho, Hyun-Ho;Koo, Jeong-Hwan;Yoon, Suk-Goo;Lee, Jae-Keun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.10
    • /
    • pp.1159-1167
    • /
    • 2000
  • Particles in liquid-solid suspension flow might enhance or suppress the rate of heat transfer and turbulence depending on their size and concentration. The heat transfer characteristics of liquid-solid suspension in turbulent flow are not well understood due to the complexibility of interaction between solid particles and turbulence of the carrier fluid. In this study, the heat transfer coefficients of liquid-solid mixtures are investigated using a double pipe heat exchanger with suspension flows in the inner pipe. Experiments are carried out using spherical fly ash particles with mass median diameter ranging from 4 to $78{\mu}m$. The volume concentration of solids in the slurry ranged from 0 to 50% and Reynolds number ranged from 4,000 to 11,000. The heat transfer coefficient of liquid-solid suspension to water flow is found to increase with decreasing particle diameter. The heat transfer coefficient increases with particle volume concentration exhibiting the highest heat transfer enhancement at the 3% solid volume concentration and then gradually decreases. A correlation for heat transfer to liquid-solid flows in a horizontal pipe is presented.

  • PDF

Effective Thermal Conductivities $Al_2O_3$ Nanoparticles Suspended in Water with Low Concentration (1%미만의 부피비를 가지는 알루미나 나노유체의 유효 열전도도)

  • Lee, Byeong-Ho;Kim, Jun-Ho;Kong, Yu-Chan;Jang, Seok-Pil;Koo, Ja-Ye
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2177-2181
    • /
    • 2007
  • In this paper, effective thermal conductivities of water-based $Al_2O_3$-nanofluids with low concentration from 0.01 vol. % to 0.3 vol. % are experimentally obtained by transient hot wire method (THWM). The water-based $Al_2O_3$-nanofluids are manufactured by two-step method which is widely used. To examine suspension and dispersion characteristics of the water-based $Al_2O_3$-nanofluids, Zeta potential as well as transmission electron micrograph (TEM) is observed. We confirm the manufactured $Al_2O_3$-nanofluids have good suspension and dispersion. The effective thermal conductivities of the water-based $Al_2O_3$-nanofluids with low concentration are enhanced up to 1.64% compared with that of DI water at $21^{\circ}C$. In addition, experimental results are compared with theoretical results from Jang and Choi model.

  • PDF

Economic-based approach for predicting optimal water pipe renewal period based on risk and failure rate

  • Kim, Kibum;Seo, Jeewon;Hyung, Jinseok;Kim, Taehyeon;Kim, Jaehag;Koo, Jayong
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.63-73
    • /
    • 2019
  • This study suggests a method for calculating the benefits of water pipe renewal based on an estimate of the water supply suspension risk. The proposed method based on five benefit items is more direct and specific than other benefit estimation methods. In addition, a methodology evaluating the economics of pipe renewal based on pipe failure rate is proposed for estimating the optimal renewal point from an economic perspective. By estimating the optimal renewal period based on a yearly benefit cost ratio per pipe in a case study area, it was possible to draft an optimal renewal plan for the subject region from an economic perspective. Compared with other methodologies, a reasonable optimal renewal period was derived from an economic point of view. The result of this study may be used to develop future water pipe renewal plans. Moreover, the proposed methodologies and results derived from this study can be applied to asset management plans.

Resuspension Characteristics of Deposited Fine-Grained Sediments (미세퇴적물(微細堆積物)의 부상특성(浮上特性)에 관한 연구(硏究))

  • Kim, Cha-Kyum;Lee, Jong-Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.221-229
    • /
    • 1992
  • A series of experiments on the resuspension of deposited fine-grained sediments were carried out in a recirculating straight flume to investigate the influence of the sediment type, water content and bed shear stress (${\tau}_b$) on the resuspension characteristics of the sediments. The sediments were sampled from Youngkwang coast and Youngdo coast which are located in the western sea and southeastern sea of Korea, respectively. Critical bed shear stress (${\tau}_c$) for resuspension was deduced for each experimental series. For the same sediment, critical bed shear stress for resuspension decreased but suspension mass or rate increased with increasing water content. The resuspension of deposited fine-grained sediments depended strongly on the water content, and the sediment type characterizing the inter-particle bond strength. It has been found that critical bed shear stress for resuspension in the unidirection flow is about 4 times higher than that in the combined wave-current flow, In case of lower bed shear stress, after an initially high suspension, suspension mass approaches a constant value due to the bed hardening with increasing time, but in case of higher bed shear stress, suspension mass increased successively due to the bed softening with time. Initial suspension rate, $E={\alpha}_3({\tau}_b/{\tau}_c-1)^{\beta}$ (where ${\alpha}_3$ and ${\beta}$=empirical constants), was estimated for each experimental series, ${\alpha}_3$ and ${\beta}$ values for the same sediment increased with water content.

  • PDF

Establishment of a novel plant regeneration system from suspension-derived callus in the halophytic Leymus chinensis (Trin.)

  • Sun, Yan-Lin;Hong, Soon-Kwan
    • Journal of Plant Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.228-235
    • /
    • 2010
  • The establishment of cell suspension culture and plant regeneration of the halophytic Leymus chinensis (Trin.) are described in this study for the first time. Callus induction solid medium containing Murashige and Shoog (MS) basic salt, $2.0\;mg\;l^{-1}$ 2,4-dichlorophenoxyacetic acid (2,4-D), and $5.0\;mg\;l^{-1}$ L-glutamic acid with $30.0\;g\;l^{-1}$ sucrose and $4.0\;g\;l^{-1}$ gelrite for solidification induced the highest rate of cell division in Type 1 callus among calli of various types. Liquid medium with the same hormone distribution was therefore, used for cell suspension culture from Type 1 callus. Over a 30 d suspension culture at 100 rpm, great amounts of biomass were accumulated, with 71.07% average daily increment and 22.32-fold total fresh weight increment. Comparison of before and after suspension culture, the distribution of different size callus pieces and the maintenance of callus type were basically unaltered, but a slight increase in relative water contents was observed. To induce the potential of plant regeneration, the directly transferring on plant regeneration solid medium containing MS basic salt, $0.2\;mg\;l^{-1}$ $\alpha$-naphthalene acetic acid (NAA), $2.0\;mg\;l^{-1}$ kinetin (Kn), and $2.0\;g\;l^{-1}$ casamino acid and indirectly transferring were simultaneously performed. Even now growth rates of suspension-derived callus on solid medium were approximately half of those of Type 1 callus, but faster somatic embryogenesis was observed. Rooting of all regenerated shoots was successfully performed on half-strength MS medium. All plants appeared phenotypically normal.

Effects of Temperature on Flocculation Kinetics Using Fe(III) Coagulant in Water Treatment (정수처리시 Fe(III) 응집제를 사용한 응집동력학에 대한 온도의 영향)

  • 강임석
    • Journal of Environmental Science International
    • /
    • v.4 no.2
    • /
    • pp.181-194
    • /
    • 1995
  • Flocculation kinetics using ferric nitrate as a coagulant to coagulate kaolin clay in water was examined as a tool to investigate the effect of low temperature under tightly controlled treatment conditions. Both the particle size distribution data obtained from Automatic Image Analysis (AIA) system and the on-line measurement of the degree of turbidity fluctuation in a flowing suspension by Photometric Dispersion Analyzer (PDA) were used to measure flocculation kinetics. Results show that cold water temperature had a pronounced detrimental effect on flocculation kinetics. For improving flocculation kinetics at low water temperature, maintaining constant pOH to adjust water chemistry for temperature changes was found to be partially effective only in the more acidic pH range studied.

  • PDF