• Title/Summary/Keyword: Water supply resources

Search Result 892, Processing Time 0.03 seconds

Understanding Uncertainties in Projecting Water Demand and Effects of Climate Change for Adaptive Management of Water Supply Risk of the Water Resources System (수자원 시설 물공급 리스크의 적응형 관리를 위한 물수요 및 기후변화 영향의 불확실성 검토)

  • Lee, Sang-Eun;Park, Hee-Kyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.293-305
    • /
    • 2011
  • A special concern is paid to the risks with which small-sized water resources systems are confronted in supplying water in the far future. Taking the Gwangdong dam reservoir as a case study, the authors seek to understand demand-side and supply-side disturbances of a reservoir, which, respectively, corresponds to effects of water demand changes on the intake amount and those of climate changes on the inflow amount. In result, it is demonstrated that both disturbances in the next 50 years are almost unpredictable. Yet the projection ranges, thought of as relatively reliable information that models offer, reveal that severity and period of water shortage is very likely to change. It is therefore concluded that water resources management requires more rigorous approaches to overcoming high uncertainties. The methods and models for projecting those disturbances are selected, based on practicality and applicability. Nevertheless, they show a large usefulness, especially in dealing with data shortage and reducing the needs for expensive modeling resources.

Drought risk assessment considering regional socio-economic factors and water supply system (지역의 사회·경제적 인자와 용수공급체계를 고려한 가뭄 위험도 평가)

  • Kim, Ji Eun;Kim, Min Ji;Choi, Sijung;Lee, Joo-Heon;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.8
    • /
    • pp.589-601
    • /
    • 2022
  • Although drought is a natural phenomenon, its damage occurs in combination with regional physical and social factors. Especially, related to the supply and demand of various waters, drought causes great socio-economic damage. Even meteorological droughts occur with similar severity, its impact varies depending on the regional characteristics and water supply system. Therefore, this study assessed regional drought risk considering regional socio-economic factors and water supply system. Drought hazard was assessed by grading the joint drought management index (JDMI) which represents water shortage. Drought vulnerability was assessed by weighted averaging 10 socio-economic factors using Entropy, Principal Component Analysis (PCA), and Gaussian Mixture Model (GMM). Drought response capacity that represents regional water supply factors was assessed by employing Bayesian networks. Drought risk was determined by multiplying a cubic root of the hazard, vulnerability, and response capacity. For the drought hazard meaning the possibility of failure to supply water, Goesan-gun was the highest at 0.81. For the drought vulnerability, Daejeon was most vulnerable at 0.61. Considering the regional water supply system, Sejong had the lowest drought response capacity. Finally, the drought risk was the highest in Cheongju-si. This study identified the regional drought risk and vulnerable causes of drought, which is useful in preparing drought mitigation policy considering the regional characteristics in the future.

Analysis of Emergency Water Supply Effects of Multipurpose Dams Using Water Shortage Index (용수부족지표를 이용한 다목적댐의 비상용수 공급 효과 분석)

  • Lee, Gwang-Man;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.11
    • /
    • pp.1143-1156
    • /
    • 2012
  • One of the important purposes of most water resources systems is to prevent from drought damages. However, there are uncertainties in water supply plans from a reservoir due to factors such as limitation of available data, inaccuracy of surveyed data, unsuitability of analysis method, and climate change. In actual operating process, severe drought exceeding the water supply capability makes the normal water usage difficult. In Korea, however, alternative water source such as a development of new water project is very limited in case of water shortages due to drought. Especially, since there is no standard to evaluate the water supply effect considering severe drought damages, it is difficult to prepare the practical measures. In this study, water shortage events of existing multipurpose reservoirs are analyzed and the method of using low-storage emergency water supply is studied by using Water Shortage Index (WSI). The water shortage events are analyzed and the effect of water shortage decrease is evaluated using the existing inflow data of multi-purpose reservoirs. The results show that Imha, Daechung, Hapchon and Namkang reservoirs are highly vulnerable to the severe drought and required to develop additional emergency water source.

Analysis of Urban Water Cycle Considering Water Reuse Option (물재이용을 고려한 도시지역의 물순환 해석)

  • Lee, Ji-Ho;Pak, Ki-Jung;Yun, Jae-Young;Yoo, Chul-Sang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1925-1928
    • /
    • 2007
  • Water cycle analysis was performed for Gunja basin located in metropolitan Seoul using Aquacycle model in order to assess the problems of urban water cycle. From the water cycle analysis of Gunja basin, it was found that 75% of total rainfall occurred in the form of surface runoff, and groundwater recharge only accounted for about 7%. This suggests serious distortion of water cycle which can be attributed to urbanization. Feasibility analysis of reuse scenarios such as rainwater use and wastewater reuse was then performed to examine their influences on improving the water cycle. From the analysis of water reuse options, it was shown that imported water supply savings of 13% can be achieved through rainwater use, and water supply savings of 31% through wastewater reuse.

  • PDF

Development of optimization model for booster chlorination in water supply system using multi-objective optimization method (다목적 최적화기법을 활용한 상수도 공급계통 잔류염소농도 최적운영 모델 개발)

  • Kim, Kibum;Seo, Jeewon;Hyung, Jinseok;Kim, Taehyeon;Choi, Taeho;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.5
    • /
    • pp.311-321
    • /
    • 2020
  • In this study, a model to optimize residual chlorine concentrations in a water supply system was developed using a multi-objective genetic algorithm. Moreover, to quantify the effects of optimized residual chlorine concentration management and to consider customer service requirements, this study developed indices to quantify the spatial and temporal distributions of residual chlorine concentration. Based on the results, the most economical operational method to manage booster chlorination was derived, which would supply water that satisfies the service level required by consumers, as well as the cost-effectiveness and operation requirements relevant to the service providers. A simulation model was then created based on an actual water supply system (i.e., the Multi-regional Water Supply W in Korea). Simulated optimizations were successful, evidencing that it is possible to meet the residual chlorine concentration demanded by consumers at a low cost.

Estimation of Optimal Hydro-Power Supply Amount of Yongdam Multipurpose Dam for the Contract on the Free-Competition Market (자유경쟁 시장 내에서 용담다목적댐 발전소의 최적 계약가능 공급량 평가)

  • Yoo, Ju-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.1
    • /
    • pp.25-35
    • /
    • 2005
  • Nowaday the amount of water resource to generate the hydro-power energy has decreased as that of the water supply has increased. In case that the national market of the energy will be in free competition, the energy producer need to suggest the amount of the optimal supply with the hydrological reliability for a deal. In this study the optimal reservoir operation was performed by the linear programming and the optimal reliabilities of inflows and the power supply were obtained by the one dimensional search technique to estimate the energy with the optimal inflow reliability which the power system of the Yongdam multipurpose dam in Geum river can produce. And the main results were presented.

Current status of Jeju special self-governing province's water infrastructure and direction for improvement (제주특별자치도 물인프라 현황 및 개선방향)

  • Kim, Jinkeun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.497-505
    • /
    • 2021
  • This paper investigates the current status of Jeju special self-governing province (JSSGP)'s water infrastructure and recommends directions for improvement. JSSGP relies on groundwater for most of its water resources. Recently, water usage has been steadily increasing due to the increase of residents and tourists while the quality of groundwater has been steadily worsening. Deterioration in water quality of groundwater can be seen through the increase in concentration of nitrate nitrogen and microorganisms. To overcome such problems, water consumption must be reduced by water demand management in all fields including residential and agricultural water use. The quality of water resources should be preserved through the management of pollutants. For efficient management of water resources, great efforts should be made to reduce the leakage rates in household and agricultural water, which is currently at the highest level in the country. Furthermore, diversification of water intake sources other than groundwater is needed, especially for agricultural water supply. For water and sewerage facilities, compliance with drinking water quality standards and discharge water quality standards must be achieved through the optimization of operation management. This process requires recruiting professionals, improving existing workers' expertise, and improving facilities.

A Study on the Effect to Reduce the Greenhouse Gas with a Pump Scheduling System in Water Supply Plant : Energy Efficiency Improvement CDM Project in Paldang Pumping Station(III) (펌프 스케쥴링 시스템을 적용한 수도사업장의 온실가스 저감효과 분석 : 팔당3 취수장 에너지효율향상 CDM 사업을 중심으로)

  • Kim, Min Su;Lee, Hyung Muk;Park, Min Su;Gwon, Gi Beom
    • Journal of Climate Change Research
    • /
    • v.4 no.1
    • /
    • pp.63-75
    • /
    • 2013
  • The purpose of this study is to analyze the green-house gas emission reduction of the pump scheduling system applied to the water-supply facilities in all objectivity with AMS-II.C/Version 13 in CDM methodology. To calculate the baseline and project emission in Paldang Pumping Station (III) the data about water flow, water level, electricity consumption, etc. before and after the implementation of project was used. This study considers internal facility (mostly for lighting) electricity consumption and grid loss in order to get more accurate emission reductions. The methodology used in this study will be able to apply to different energy improvement techniques to calculate emission reductions in water supply facilities.