• Title/Summary/Keyword: Water supply Industry

Search Result 142, Processing Time 0.026 seconds

Fisheries Resources of Sudan

  • Abd El Magid, Magda Ahmed;Elseed, Salah Mahmoud Hamed
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.3 no.1
    • /
    • pp.42-47
    • /
    • 2008
  • Sudan is the largest country in Africa with an area of $2,505,810km^2$, of water constitutes $129,810km^2$, and cultivable land is 34%. Sudan has a total land boundary of 7,687 km with 9 border countries. This vast country embraces different vegetation patterns reflecting various climatic zones, grading from tropical rain forests in the south through semi-tropical savannah to arid zone in the extreme north, with annual rainfall ranging from 1,600 mm in the south to 25 mm in the north. The aquaculture industry is not developed as yet. Because of their basic characteristics, the Sudan inland and marine capture fisheries are of a small-scale and semi-industrial nature. The demand for fish and fish preparations is growing steadily. The animal resources sector (which includes fisheries) contributes 21% of Sudan GDP. The contribution of fisheries to Sudanese GDP is currently marginal. The per caput supply is only 1.6 kg/year, which is mostly obtained by capture fish landings. Despite the fact that fisheries GDP is extremely low, fish and fish preparations contribute to the food security of a wide sector of the rural and urban communities. Fisheries also provide work opportunities in the form of secondary employment as a source of income that indirectly contributes to household food security.

  • PDF

Estimation of the mechanical properties of oil palm shell aggregate concrete by novel AO-XGB model

  • Yipeng Feng;Jiang Jie;Amir Toulabi
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.645-666
    • /
    • 2023
  • Due to the steadily declining supply of natural coarse aggregates, the concrete industry has shifted to substituting coarse aggregates generated from byproducts and industrial waste. Oil palm shell is a substantial waste product created during the production of palm oil (OPS). When considering the usage of OPSC, building engineers must consider its uniaxial compressive strength (UCS). Obtaining UCS is expensive and time-consuming, machine learning may help. This research established five innovative hybrid AI algorithms to predict UCS. Aquila optimizer (AO) is used with methods to discover optimum model parameters. Considered models are artificial neural network (AO - ANN), adaptive neuro-fuzzy inference system (AO - ANFIS), support vector regression (AO - SVR), random forest (AO - RF), and extreme gradient boosting (AO - XGB). To achieve this goal, a dataset of OPS-produced concrete specimens was compiled. The outputs depict that all five developed models have justifiable accuracy in UCS estimation process, showing the remarkable correlation between measured and estimated UCS and models' usefulness. All in all, findings depict that the proposed AO - XGB model performed more suitable than others in predicting UCS of OPSC (with R2, RMSE, MAE, VAF and A15-index at 0.9678, 1.4595, 1.1527, 97.6469, and 0.9077). The proposed model could be utilized in construction engineering to ensure enough mechanical workability of lightweight concrete and permit its safe usage for construction aims.

Evaluation of Ozone Resistance and Anti-Corrosion Performance of Water Treatment Concrete according to Types of Metal Spray Coating (수처리시설용 콘크리트의 금속용사 피막 종류에 따른 내오존성 및 전기화학적 방식 성능 평가)

  • Park, Jin-Ho;Choi, Hyun-Jun;Lee, Han-Seung;Kim, Sang-yeol;Jang, Hyun-O
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.61-68
    • /
    • 2019
  • As the pollution of water resources deteriorates due to industrialization and urbanization, it is difficult to supply clean water through a water treatment method using chlorine. Therefore, the introduction of advanced water treatment facilities using ozone is on the increase. However, epoxy which is used as waterproofing and anticorrosives and stainless steel used in conventional waterproofing and anti-corrosive methods have deteriorated because of the strong oxidizing power of ozone, causing problems such as leaking. Moreover, it even causes the durability degradation of a concrete. Therefore, in this study, metal spraying system was used as the means of constructing a metal panel with excellent ozone resistance and chemical resistance which is an easier method than an existing construction method. Ozone resistance was evaluated in accordance with the type of metal sprayed coatings to develop a finishing method which can prevent the concrete structure of water treatment facilities from deterioration. Furthermore, electrochemical stability in actual sewage treatment plant environment was evaluated. Experimental results showed that Ti has superior ozone resistance after spraying and the electrochemical stability in the sewage treatment plant environment showed that Ti has the highest polarization resistance of $403.83k{\cdot}{\Omega}{\cdot}cm^2$, which ensures high levels of durability.

Are Poverty and Illiteracy to Blame for Forests Degradation? A Case Study of Mbeya Range Forest Reserve. Mbeya-Tanzania

  • Ngondya, Issakwisa Bernard;Ibrahim, Rashid Ismael Hag;Choo, Gab-Chul
    • Journal of Forest and Environmental Science
    • /
    • v.27 no.2
    • /
    • pp.93-99
    • /
    • 2011
  • In this study, a total of 350 households contained 700 individuals in Iganzo village were surveyed to study their literate and poverty levels and their impacts to conservation of the Mbeya Range Forest Reserve. The study included 350 women and 350 men. The majority of respondents were between the ages of 31-40 years old (53%), while the rest were between 41-50 years old (25%) and 21-30 years old (22%). The total income per day per household was calculated and averaged to 4,570 Tanzanian shillings that is equal to about 3 U.S. dollars. The average number of members per household was seven. It was reported that, there is a tremendous decrease in biodiversity composition of the reserve mainly due to poverty (80%) and ignorance (76%) of the people on the importance of the reserve. Other causes for this decrease were reported to be grazing of livestock in the reserve (23%), poor farming systems (68%), which resulted in soil erosion, encroachment (64%) through expansion of farms towards the reserve boundary and charcoal burning (34%). Respondents from Mbeya Urban Water Supply Authority and District Forest Office mentioned lack of funds (49%) and lack of experts (56%) as challenges that face the conservation of the reserve. It was revealed that 25% of respondents had never gone to school, 53% had primary level of education as their highest level of education, 20% had secondary education and 2% had first degree. The null hypothesis that poverty and illiteracy have a positive correlation to forest degradation was accepted based on these findings at a probability of p>0.85. Thus, it was concluded that poverty and illiteracy among Iganzo village residents are the main causes for the degradation of biodiversity in Mbeya Range Forest Reserve.

Compressive Strength Experiment of Lightweight Concrete Using Coarse Aggregate Produced by 3D Printing (3D 프린팅으로 제작한 굵은 골재를 사용한 경량콘크리트의 압축강도 실험)

  • Ahn, Byung-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.54-59
    • /
    • 2020
  • Coarse aggregate is produced in various ways depending on the location and production method. Currently, the construction industry is in need of a stable supply of coarse aggregate and a way to secure standard quality. The purpose of this study is to examine whether the use of coarse aggregate in 3D printing can help solve this problem. ABS filament was selected for use in 3D printing. CATIA was used for the design of the coarse aggregate, and CUBICON Single Plus was used for the production. Six specimens were produced and cured in water for 28 days. Three of them were made with AE agent, and three were made without it. A compressive strength test confirmed that when the AE agent was used, the compressive strength was greater than the lightweight concrete design criterion specified in the concrete standard specification. This suggests that coarse aggregate produced by a 3D printer may be used for lightweight concrete. A mass production system using this method could help to solve the problems facing the construction industry, such as stable supply and demand for coarse aggregate and securing standard quality.

21세기 광물자원과 우리의 환경

  • O Min Su
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.53-67
    • /
    • 2002
  • As in the past, we are concerned today with the magnitudes of mineral resources and the adequacy of these resources to meet future needs. In looking at global resource issues, we should consider the need for the resource, its supply, and the environmental consequences of using it. The need for a resource can become a resource dependency, especially as the global population expands and each of us becomes increasingly dependent upon hundreds of natural materials. Therefore, our great mineral consumption makes the human population a true 'Geologic Force', which will be even more significant in the future when the global population is projected to reach alarming proportions. Although our supplies of mineral resources probably will be sufficient for the 21s1 century, the uneven distribution of minerals in the Earth's crust almost certainly will continue to be a major problem The most likely result will be major shifts in both prices and sources of supply of many mineral resources. As for energy resources, we must avoid an obsessive dependency on one fuel and expand instead to thor energy resources. Finally, because the use of resources affects the environment, we need to focus on resource exploitation and global pollution, particularly in regard to ground water and arable land. We must manage our resources so as to be in balance with our environment. And the accelerated industrialization of South Korean economy over the last three decades has resulted in the mass consumption of nuneral commodities. South Korea has around 50 useful mineral commodities for the mineral industry, among 330 kinds of minerals described. The component ratio of the mining industry sector of the gross national production(GNP) in South Korea dropped from $1.2\%\;in\;1971\;to\;0.34\%$ in 1997 due to the rapid growth of other industries In the countxy. During the period from 1971 to 1997, the average growth rate of mineral consumption in South Korea was $9.13\%$ yearly and that of GNP per capita was $14.97\%$. The mineral consumptions per capita showed a continual Increase during the last 30 years as follows(parenthesis. GNP per capita): 0.99 metric tons in 1971($\$289$), 3.83 metric tons in 1989($\$5,210$), 6.11 metric tons in 1995 ($\$10,037$), and 6.66 metric tons in 1997($9,511). The total amount of mineral consumption in South Korea was 33 million tons of 32 mineral commodities in 1971, and 306 million metric tons of 47 mineral commodities In 1997.

  • PDF

21세기 광물자원과 우리의 환경

  • 오민수
    • Proceedings of the KSEEG Conference
    • /
    • 2002.10a
    • /
    • pp.53-67
    • /
    • 2002
  • As in the past, we are concerned today with the magnitudes of mineral resources and the adequacy of these resources to meet future needs. In looking at global resource issues, we should consider the need for the resource, its supply, and the environmental consequences of using it. The need for a resource can become a resource dependency, specially as the global population expands and each of us becomes Increasingly dependent upon hundreds of natural materials. Therefore, our great mineral consumption makes the human population a true “Geologic Force”, which will be even more significant in the future when the global population is projected to reach alarming proportions. Although our supplies of mineral resources probably will be sufficient for the 21st century, the uneven distribution of minerals in the Earth's crust almost certainly will continue to be a major problem. The most likely result will be major shifts in both prices and sources of supply of many mineral resources. As for energy resources, we must avoid an obsessive dependency on one fuel and expand instead to other energy resources. Finally, because the use of resources affects the environment, we need to focus on resource exploitation and global pollution, particularly in regard to ground water and arable land. We must manage our resources so as to be in balance with our environment. And the accelerated industrialization of South Korean economy over the last three decades has resulted in the mass consumption of mineral commodities. South Korea has around 50 useful mineral commodities for the mineral industry, among 330 kinds of minerals described. The component ratio of the mining industry sector of the gross national production(GNP) in South Korea dropped from 1.2% in 1971 to 0.34% in 1997 due to the rapid growth of other industries in the country. During the period from 1971 to 1997, the average growth rate of mineral consumption in South Korea was 9.13% yearly and that of GMP per capita was 14.97%. The mineral consumptions per capita showed a continual increase during the last 30 years as follows(parenthesis: GW per capita); 0.99 metric tons in 1997($289), 3.83 metric tons in 1989($5, 210), 6.11 metric tons in 1995 ($10, 037), and 6.66 metric tons in 1997($9, 511). The total amount of mineral consumption in South Korea was 33 million tons of 32 mineral commodities in 1971, and 306 million metric tons of 47 mineral commodities in 1997.

  • PDF

Effects of Phosphogypsum Application on Field Soil Properties and Yield and Quality of Garlic (Allium sativum L.) (부산석고 시용에 의한 밭 토양 특성과 마늘의 수량 및 품질에 미치는 영향)

  • Kim, Young-Nam;Cho, Ju Young;Yoon, Young-Eun;Choe, Hyoen Ji;Cheong, Mi Sun;Lee, Mina;Kim, Kwon-Rae;Lee, Yong Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.1
    • /
    • pp.33-39
    • /
    • 2021
  • BACKGROUND: Globally, large amounts of phosphogypsum (PG), which is a by-product of the phosphate fertilizer production, is deposited in open areas. As PG contains calcium, phosphate, and sulphate, it can be used as a soil amendment in farmlands. This study was conducted to investigate the effects of PG application on properties of field soil and yield and quality of garlic (Allium sativum L.), and to seek appropriate level of PG application into the field. METHODS AND RESULTS: This experiment was conducted by applying PG at four different levels that were adjusted based on 65% calcium base saturation in the field soil: 0% (control), 50% (PG50, 100 kg/10a), 100% (PG100, 200 kg/10a), and 150% (PG150, 300 kg/10a). Following cultivation, soil electrical conductivity (EC), organic matter, available P and exchangeable Ca increased, whilst soil pH decreased. With increase in PG application level, soil EC and exchangeable Ca increased. PG application increased concentrations of water soluble Ca and SO4 across the soil profile, especially in PG150. The highest yield of garlic was found in PG100 treatment. The plant's uptake for N, P, Ca, and S increased by PG applications, but that for K decreased. Moreover, concentrations of S-related amino acids such as cysteine and methionine in garlic increased by PG applications. The increased content of nutrients and amino acids with PG supply might improve yield, quality, and favor of the crop. CONCLUSION: Overall, PG application at 200 kg/10a into a field had the best effect on improving soil fertility as well as yield and quality of garlic. Further studies are required to maximize efficiencies of PG supply in soil management and production of various crops.

Effect of Electroplating Parameters on Oxygen Evolution Reaction Characteristics of Raney Ni-Zn-Fe Electrode (Raney Ni-Zn-Fe 전극의 산소발생 반응 특성에 미치는 도금변수의 영향)

  • CHAE, JAEBYEONG;KIM, JONGWON;BAE, KIKWANG;PARK, CHUSIK;JEONG, SEONGUK;JUNG, KWANGJIN;KIM, YOUNGHO;KANG, KYOUNGSOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.23-32
    • /
    • 2020
  • The intermittent characteristics of renewable energy complicates the process of balancing supply with demand. Electrolysis technology can provide flexibility to grid management by converting electricity to hydrogen. Alkaline electrolysis has been recognized as established technology and utilized in industry for over 100 years. However, high overpotential of oxygen evolution reaction in alkaline water electrolysis reduces the overall efficiency and therefore requires the development of anode catalyst. In this study, Raney Ni-Zn-Fe electrode was prepared by electroplating and the electrode characteristics was studied by varying electroplating parameters like electrodeposition time, current density and substrate. The prepared Raney Ni-Zn-Fe electrode was electrochemically evaluated using linear sweep voltammetry. Physical and chemical analysis were conducted by scanning electron microscope, energy dispersive spectrometer, and X-ray diffraction. The plating time did not changed the morphology and composition of the electrode surface and showed a little effect on overpotential reduction. As the plating current density increased, Fe content on the surface increased and cauliflower-like structure appeared on the electrode surface. In particular, the overpotential of the electrode, which was prepared at the plating current density of 320 mA/㎠, has showed the lowest value of 268 mV at 50 mA/㎠. There was no distinguishable overpotential difference between the type of substrate for the electrodes prepared at 80 mA/㎠.

Elution characteristics of lime-based granular alkaline material and applicability of phosphorus crystallization processes (석회계 입상알칼리재의 용출특성과 이를 이용한 인 결정화공정의 적용성)

  • Chang, Hyang-Youn;Park, Na-Ri;Jang, Yeo-Ju;Ahn, Kwang-Ho;Lim, Hyun-Man;Kim, Weon-Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.577-586
    • /
    • 2017
  • One of the major sources causing eutrophication and algal blooms of lakes or streams is phosphorus which comes from point and nonpoint pollution sources. HAP (hydroxyapatite) crystallization using granular alkaline materials can achieve the decrease of phosphorus load from wastewater treatment plants and nonpoint pollution control facilities. In order to induce HAP crystal formation, continuous supply of calcium and hydroxyl ions is required. In this research, considering HAP crystallization, several types of lime-based granular alkaline materials were prepared, and the elution characteristics of calcium and hydroxyl ions of each were analyzed. Also, column tests were performed to verify phosphorus removal efficiencies of granular alkaline materials. Material_1 (gypsum+cement mixed material) achieved the highest pH values in the column tests consistently, also, Material_2 (gypsum+slag mixed material) and Material_3 (calcined limestone material) achieved over pH 9.0 for 240 hours (10 days) and proved the efficiencies of long-term ion supplier for HAP crystallization. In the column tests using Material_3, considerable pH increase and phosphorus removal were carried out according to each linear velocity and filtration depth. T-P removal efficiencies were 87.0, 84.0, 68.0% and those of PO4-P 100.0, 97.0, 80.0% for linear velocity of 1.0, 2.5, 5.0 m/hr respectively. Based on the column test results, the applicability of phosphorus removal processes for small-scale wastewater treatment plants and nonpoint pollution control facilities was found out.