• Title/Summary/Keyword: Water soluble organic carbon

Search Result 95, Processing Time 0.039 seconds

Determination of Amino Acids on Wintertime PM2.5 using HPLC-FLD (HPLC-FLD를 이용한 겨울철 PM2.5 중 아미노산 성분 분석)

  • Park, Da-Jeong;Cho, In-Hwan;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.5
    • /
    • pp.482-492
    • /
    • 2015
  • Ground-based measurements were conducted from January 6 to 12 of 2015 for understanding characteristics of nitrogen containing carbonaceous aerosols as 16 amino acids at the Mokpo National University, Korea. The detailed amino acid components such as Cystine ($(SCH_2CH(NH_2)CO_2H)_2$) and Methionine ($C_5H_{11}NO_2S$) and their sources were analyzed by High-Performance Liquid Chromatography with Fluorescence Detection (HPLC-FLD) for behavior of secondary products in particulate matter. In addition, organic carbon (OC) and elemental carbon (EC) based on the carbonaceous thermal distribution (CTD), which provides detailed carbon signature characteristics relative to analytical temperature, and water soluble organic carbon (WSOC) by total organic carbon (TOC) analyzer were used to understand the carbon compound behaviors. The backward trajectories were discussed for originations of carbonaceous aerosols as well. Different airmasses were classified with the amino acids and OC thermal signatures. The results can provide to understand the aging process influenced by the long-range transport from East Sea area.

Group Separation of Water-soluble Organic Carbon Fractions in Ash Samples from a Coal Combustion Boiler

  • Park, Seung-Shik;Jeong, Jae-Uk;Cho, Sung-Yong
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.1
    • /
    • pp.67-72
    • /
    • 2012
  • The chemical characterization of water-soluble organic carbon in ash emitted from a coal combustion boiler has not been reported yet. A total of 5 ash samples were collected from the outlet of an electrostatic precipitator in a commercial 500 MW coal-fired power plant, with their chemical characteristics investigated. XAD7HP resin was used to quantify the hydrophilic and hydrophobic water-soluble organic carbons (WSOC), which are the fractions of WSOC that penetrate and remain on the resin column, respectively. Calibration results indicate that the hydrophilic fraction includes aliphatic dicarboxylic acids and carbonyls (<4 carbons), amines and saccharides, while the hydrophobic fraction includes aliphatic dicarboxylic acids (>4-5 carbons), phenols, aromatic acids, cyclic acid and humic acid. The average mass of the WSOC in the ash samples was found to depend on the bituminous coal type being burned, and ranged from 163 to 259 ${\mu}g$ C/g of ash, which corresponds to 59-96 mg C of WSOC/kg of coal combusted. The WSOC mass accounted for 0.02-0.03 wt% of the used ash sample mass. Based on the flow rate of flue gas produced from the combustion of the blended coals in the 500 MW coal combustion boiler, it was estimated that the WSOC particles were emitted to the atmosphere at flow rates of 4.6-7.2 g C/hr. The results also indicated that the hydrophilic WSOC fraction in the coal burned accounted for 64-82% of the total WSOC, which was 2-4 times greater than the mass of the hydrophobic WSOC fraction.

Effect of Organic Residue Incorporation on Salt Activity in Greenhouse Soil (시설재배지 토양에서 유기자재 투입이 염류활성도에 미치는 영향)

  • Lee, Seul-Bi;Lee, Chang-Hoon;Hong, Chang-Oh;Kim, Sang-Yoon;Lee, Yong-Bok;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.4
    • /
    • pp.397-402
    • /
    • 2009
  • In Korea, salt stress is one of the major problems limiting crop production and eco-environmental quality in greenhouse soil. The objective of this study was to evaluate the effectiveness of organic residues (Chinese milk vetch, maize stalk, rice straw, and rye straw) for reducing salt activity in greenhouse soil. Organic residues was incorporated with salt-accumulated soil (EC, 3.0 dS $m^{-1}$) at the rate of 5% (wt $wt^{-1}$) and the changes of electrical conductivity (EC) was determined weekly for 8 weeks under incubation condition at $30^{\circ}C$. The EC, microbial biomass carbon (MBC), and water soluble ions in soil was strongly affected by C/N ratio of organic residues. After 8 weeks incubation, the concentration of water soluble $NO_3{^-},\;Ca^{2+}$, and $Mg^{2+}$ was significantly decreased in organic residues having high C/N ratio (maize stalk, rice straw, and rye straw) incorporated soil compared to organic residues having lower C/N ratio (Chinese milk vetch) incorporated soil. The EC value in Chinese milk vetch incorporated soil was higher than control treatment. In contrast, maize stalk, rice straw, and rye straw amended soil was highly decreased the EC value compared to control and Chinese milk vetch applied soil after 4 weeks incubation. Our results indicated that incorporation of organic residues having high C/N ratio (>30) could reduce salt activity resulting from reducing concentration of water soluble ions.

The Solubility Characteristics of Organic Compounds in Urban Aerosol Samples

  • Kim, Young-Min;Peter Brimblecombe;Tim Jickells;Baek, Sung-Ok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.E
    • /
    • pp.27-40
    • /
    • 1998
  • The solubility characteristics of organic compounds were studied in terms of the extraction efficiency as a function of the polarity of the organic solvent, and the acidity of water in urban aerosol samples collected in University of East Anglia (UEA), Norwich, England. The extraction efficiency of organic compounds were evaluated with respect to the organic carbon, -nitrogen and -hydrogen by means of a wide range of solvent which include polar and nonpolar organic solvents as well as acids and alkaline water. In addition, after being dissolved in aqueous solution, the aqueous chemistry of organic compounds were studied in terms of the organic metal complexes in aerosol, which were studied with oxalic acid, copper, and zinc. The results of this study indicate that solubility characteristics of organic compounds depend on the polarity of the solvents and the acidity of the solvents. In particular, some organic compounds are water soluble, even though they are much smaller than acetone soluble fractions. In the comparison between polar organic solvent extraction and non- polar organic solvent extraction, it can be thought that significant fraction of organic compounds analysed in the aerosol samples, are polar organic compounds because of the higher extraction efficiencies of organic compounds in polar organic solvent extraction than in nonpolar organic solvent extraction. Regarding the study of the oxalic -metal complexes, it can be thought that most oxalic acids are present in the form of oxalic -copper complexes in the aerosols collected at UEA.

  • PDF

Absorption properties and size distribution of aerosol particles during the fall season at an urban site of Gwangju, Korea

  • Park, Seungshik;Yu, Geun-Hye
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.159-172
    • /
    • 2019
  • To investigate the influence of pollution events on the chemical composition and formation processes of aerosol particles, 24-h integrated size-segregated particulate matter (PM) was collected during the fall season at an urban site of Gwangju, Korea and was used to determine the concentrations of mass, water-soluble organic carbon (WSOC) and ionic species. Furthermore, black carbon (BC) concentrations were observed with an aethalometer. The entire sampling period was classified into four periods, i.e., typical, pollution event I, pollution event II, and an Asian dust event. Stable meteorological conditions (e.g., low wind speed, high surface pressure, and high relative humidity) observed during the two pollution events led to accumulation of aerosol particles and increased formation of secondary organic and inorganic aerosol species, thus causing $PM_{2.5}$ increase. Furthermore, these stable conditions resulted in the predominant condensation or droplet mode size distributions of PM, WSOC, $NO_3{^-}$, and $SO{_4}^{2-}$. However, difference in the accumulation mode size distributions of secondary water-soluble species between pollution events I and II could be attributed to the difference in transport pathways of air masses from high-pollution regions and the formation processes for the secondary chemical species. The average absorption ${\AA}ngstr{\ddot{o}}m$ exponent ($AAE_{370-950}$) for 370-950 nm wavelengths > 1.0 indicates that the BC particles from traffic emissions were likely mixed with light absorbing brown carbon (BrC) from biomass burning (BB) emissions. It was found that light absorption by BrC in the near UV range was affected by both secondary organic aerosol and BB emissions. Overall, the pollution events observed during fall at the study site can be due to the synergy of unfavorable meteorological conditions, enhanced secondary formation, local emissions, and long-range transportation of air masses from upwind polluted areas.

Major factors determining the size distributions of atmospheric water-soluble aerosol particles at an urban site during winter (겨울철 도시지역 대기 수용성 에어로졸 입자의 크기 분포를 결정하는 주요 인자)

  • Park, Seungshik
    • Particle and aerosol research
    • /
    • v.17 no.3
    • /
    • pp.43-54
    • /
    • 2021
  • Size distributions of atmospheric particulate matter (PM) and its water-soluble organic and inorganic components were measured between January and February 2021 at an urban site in Gwangju in order to identify the major factors that determine their size distributions. Their size distributions during the study period were mainly divided into two groups. In the first group, PM, NO3-, SO42-, NH4+ and water-soluble organic carbon (WSOC) exhibited bi-modal size distributions with a dominant condensation mode at a particle size of 0.32 ㎛. This group was dominated by local production of secondary water-soluble components under atmospheric stagnation and low relative humidity (RH) conditions, rather than long-range transportation of aerosol particles from China. On the other hand, in the second group, they showed tri-modal size distributions with a very pronounced droplet mode at a diameter of 1.0 ㎛. These size distributions were attributable to the local generation and accumulation of secondary aerosol particles under atmospheric conditions such as atmospheric stagnation and high RH, and an increase in the influx of atmospheric aerosol particles by long-distance transportation abroad. Contributions of droplet mode NO3-, SO42-, NH4+ and WSOC to fine particles in the second group were significantly higher than those in the first group period. However, their condensation mode contributions were about two-fold higher in the first group than in the second group. The significant difference in the size distribution of the accumulation mode of the WSOC and secondary ionic components between the two groups was due to the influx of aerosol particles with a long residence time by long-distance transport from China and local weather conditions (e.g., RH).

Effect of Air Stagnation Conditions on Mass Size Distributions of Water-soluble Aerosol Particles (대기 정체와 수용성 에어로졸 입자의 질량크기분포의 관계)

  • Park, Seungshik;Yu, Geun-Hye
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.3
    • /
    • pp.418-429
    • /
    • 2018
  • Measurements of 24-hr size-segregated ambient particles were made at an urban site of Gwangju under high pressure conditions occurred in the Korean Peninsula late in March 2018. The aim of this study was to understand the effect of air stagnation on mass size distributions and formation pathways of water-soluble organic and inorganic components. During the study period, the $NO_3{^-}$, $SO_4{^{2-}}$, $NH_4{^+}$, water-soluble organic carbon (WSOC), and humic-like substances(HULIS) exhibited mostly bi-modal size distributions peaking at 1.0 and $6.2{\mu}m$, with predominant droplet modes. In particular, outstanding droplet mode size distributions were observed on March 25 when a severe haze occurred due to stable air conditions and long range transport of aerosol particles from northeastern regions of China. Air stagnation conditions and high relative humidity during the study period resulted in accumulation of primary aerosol particles from local emission sources and enhanced formation of secondary ionic and organic aerosols through aqueous-phase oxidations of $SO_2$, $NO_2$, $NH_3$, and volatile organic compounds, leading to their dominant droplet mode size distributions at particle size of $1.0{\mu}m$. From the size distribution of $K^+$ in accumulation mode, it can be inferred that in addition to the secondary organic aerosol formations, accumulation mode WSOC and HULIS could be partly attributed to biomass burning emissions.

Analysis of Poly Aromatic Hydrocarbon (PAH) Pollutants Originated from Local Road Dust by Spacial Measurements (공간 측정에 의한 도로변 발생 다환방향족탄화수소 연구)

  • Park, Da-Jeong;Cho, In-Hwan;Lee, Kwang-Yul;Park, Kihong;Lee, Yeong-Jae;Ahn, Joon-Young;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.3
    • /
    • pp.272-279
    • /
    • 2016
  • Understanding sources and contributions of $PM_{2.5}$ mass and particulate PAHs from traffic-related pollution can provide valuable information for alleviating air contamination from car emissions in urban areas. Two sampling sites at the Gwangju Institute of Science and Technology (GIST, $35.228^{\circ}N$, $126.843^{\circ}E$) and National institute of environmental research NamBu Supersite (NNBS, $35.226^{\circ}N$, $126.848^{\circ}E$) were selected for comprehensive road-oriented-PM investigations. Continuous measurements from optical particle sizer (OPS) and optical particle counter (OPC) with 24 hr integrated filter based samplers for organic carbon, water soluble organic carbon, and Poly Aromatic Hydrocarbons (PAHs) were conducted during Nov. 3 through 22 in 2014. As a result, $PM_{2.5}$ mass concentrations using OPC and OPS in NNBS presented about twice higher than in GIST due to road dust impacts based on wind direction analysis. In addition, ratios of elemental carbon (EC) to organic carbon (OC) and water insoluble organic carbon (WIOC) to organic carbon (OC) supported an additional evidence of the primary pollutant contributions oriented from road dust. PAHs related to 5 rings such as benzo(e&a)pyrene indicates higher associations.