• Title/Summary/Keyword: Water sampling

Search Result 1,244, Processing Time 0.035 seconds

Assessment of Fecal Pollution and Bacterial Community Structure in Restored Section of Cheonggyecheon Stream (청계천 복원구간 내 분변오염도 평가와 미생물 군집 연구)

  • Park, Youngbin;Lee, Heetae;Kim, Seiyoon;Ko, GwangPyo
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.76-83
    • /
    • 2009
  • In 2005, the 5.84-Km length of Cheonggyecheon stream, previously covered with concrete road, was uncovered in the middle of Seoul, Korea. We investigated microbial water quality in various sites in Cheonggyecheon stream. We took water samples on three different days. The sampling sites included inflow water from upper stream (Mojeongyo), midstream (Ogansugyo), and downstream (Muhakgyo). Fecal pollution indicator microorganisms were measured by both IDEXX $Colilert^{(R)}$ and $Enterolert^{(R)}$. Microbial community from these sampling sites was also characterized based on 16S rRNA gene sequences. The average concentrations of total coliform are 5 CFU/100 mL, 1474 CFU/100 mL, and 1776 CFU/100 mL at Mojeongyo, Ogansugyo, and Muhakgyo, respectively. The average concentrations of fecal coliform were 28 CFU/100 mL, 47 CFU/100 mL in Ogansugyo, and Muhakgyo, respectively. The concentrations of other fecal indicator microorganisms including E. coli and Enterococcus sp. increased in downstream. When we characterized the microbial community, unique microbial community were discovered at different sampling sites. This study suggests that Cheonggyechoen stream is likely affected by non-point fecal sources and has unique microbial environment as the river flows downstream.

CFD Analysis to Suppress Condensate Water Generated in Gas Sampling System of HANARO (하나로 기체시료채취계통에서 생성된 응축수 억제를 위한 CFD 해석)

  • Cho, SungHwan;Lee, JongHyeon;Kim, DaeYoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2_spc
    • /
    • pp.327-336
    • /
    • 2020
  • The high-flux advanced neutron application reactor (HANARO) is a research reactor with thermal power of 30 MW applied in various research and development using neutrons generated from uranium fission chain reaction. A degasifier tank is installed in the ancillary facility of HANARO. This facility generates gas pollutants produced owing to internal environmental factors. The degasifier tank is designed to maintain the gas contaminants below acceptable levels and is monitored using an analyzer in the gas sampling panel. If condensate water is generated and flows into the analyzer of the gas sampling panel, corrosion occurs inside the analyzer's measurement chamber, which causes failure. Condensate water is generated because of the temperature difference between the degasifier tank and analyzer when the gas flows into the analyzer. A heating system is installed between the degasifier tank and gas sampling panel to suppress condensate water generation and effectively remove the condensate water inside the system. In this study, we investigated the efficiency of the heating system. In addition, the variations in the pipe temperature and the amount of average condensate water were modeled using a wall condensation model based on the changes in the fluid inlet temperature, outside air temperature, and heating cable-setting temperature.

Quantifying Uncertainty for the Water Balance Analysis (물수지 분석을 위한 불확실성 정량화)

  • Lee, Seung-Uk;Kim, Young-Oh;Lee, Dong-Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.4 s.153
    • /
    • pp.281-292
    • /
    • 2005
  • The water balance analysis for the long-term water resources plan is a simple calculation that compares water demands with possible water supplies. For a watershed being considered the reports on the performance of the water balance analysis, however, have shown inconsistent results and thus have not earned credibility due to the uncertainty of the data acquired and models used. In this research, uncertainties in the water scarcity estimate were assessed through probability representation based on the Monte Carlo simulation using Latin Hypercube Sampling (LHS). The natural flow, municipal demand, industrial demand, agricultural demand, and return flow rate were selected as representative input variables for the water balance analysis, and their distributions were set based on the linear regression and the entropy theory. The statistical properties of the output variable samples were analyzed in comparison with a deterministic estimate of the water scarcity of an existing study. Application of LHS to three sub-basins of the Geum river basin showed the deterministic estimate could be overestimated or underestimated. The sensitivity analysis as well as the uncertainty analysis found that the return flow rate of the agricultural water is the most uncertain but is rarely sensitive to the output of the water balance analysis.

CFCs 조사를 위한 지하수 시료채취방법 비교 및 평가

  • 고동찬;이대하;성현정;강철희;고경석
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.21-23
    • /
    • 2002
  • Two sampling methods for chlorofluorocarbons(CFCs) in groundwater were compared and assessed with groundwater samples in Jeju Island. CFCs concentrations from copper tube method were widely variable among triplicates and higher than those from flame-sealed glass ampule method. For the copper tube method, this is aggravated by rubber packings in the faucet of discharge line of wells, which was removed for the glass ampule method. The poor reproducibility and apparent contamination of results by copper tube method is due to the improper sealing of copper tubes and materials in water discharge line. This suggests that it is more difficult to achieve complete isolation from the atmosphere in the copper tube method and that materials that could release CFCs should be avoided along the sampling flow lines. It seems that the flame-sealed glass ampule method is more relevant for groundwater sampling for CFCs though it requires more complicated equipments and procedures.

  • PDF

Effect of Sampling Frequency During Storm Period on Estimation of Pollutant Load from Paddy Field (강우시 채수빈도가 논 오염부하량 산정에 미치는 영향)

  • Han, Kuk-Heon;Kim, Jin-Ho;Lee, Jong-Sik;Lee, Jeong-Taek;Cho, Jae-Young;Yoon, Kwang-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.1
    • /
    • pp.17-23
    • /
    • 2005
  • In order to examine effects of sampling frequency during rainfall-runoff process from paddy field on the estimation of pollution load, EMCs of several water sampling frequencies were examined. Water quality samples were conducted by every two hours interval for each event. It was found that difference of load estimation between five times sampling and two hours consecutive sampling during rainfall-runoff showed $15.2{\sim}-15.2%$ for T-N, $20.0{\sim}-26.2%$ for T-P, $28.6{\sim}-35.7%$ for the SS, respectively. In the same way, the effects of number of sampling data on estimation of pollution load using runoff-mass load(L-Q) method were investigated. L-Q equation made of five times sampling data provided 10% differences in estimation of mass loads of T-N, T-P, and SS when compared to those by L-Q equation using entire two hours consecutive sampling data during runoff process.

Application of Multi-Dimensional Precipitation Models to the Sampling Error Problem (관측오차문제에 대한 다차원 강우모형의 적용)

  • Yu, Cheol-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.5
    • /
    • pp.441-447
    • /
    • 1997
  • Rainfall observation using rain gage network or satellites includes the sampling error depending on the observation methods or plans. For example, the sampling using rain gages is continuous in time but discontinuous in space, which is nothing but the source of the sampling error. The sampling using satellites is the reverse case that continuous in space and discontinuous in time. The sampling error may be quantified by use of the temporal-spatial characteristics of rainfall and the sampling design. One of recent works on this problem was done by North and Nakamoto (1989), who derived a formulation for estimating the sampling error based on the temporal-spatial rainfall spectrum and the design scheme. The formula enables us to design an optimal rain gage network or a satellite operation plan providing the statistical characteristics of rainfall. In this paper the formula is reviewed and applied for the sampling error problems using several multi-dimensional precipitation models. The results show the limitation of the formulation, which cannot distinguish the model difference in case the model parameters can reproduce similar second order statistics of rainfall. The limitation can be improved by developing a new way to consider the higher order statistics, and eventually the probability density function (PDF) of rainfall.

  • PDF

Investigation and Analysis of Unit Industrial Water Usage Considering Latest Industrial Trend (최신 산업동향을 고려한 공업단지 사용량 원단위 분석 연구)

  • Kim, Kibum;Yu, Youngjun;Choi, Woojin;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.5
    • /
    • pp.447-457
    • /
    • 2017
  • This study derived the unit of industrial water usage reflecting the latest industry trends. Available for establishing plans such as the master plan for water supply system and analyzed changes in the basic unit by a comparison with the current basic unit values. This study analyzed 4,038 samples with a sampling error of less than 1.5 % at the 95 % confidence level after removing outliers according to a log-normal distribution. As a result, the unit of industrial water usage per site area in the whole manufacturing industry was 7.11 m3/1,000m2/d. The ten industrial categories (C10, C13, C20, C21, C22, C25, C27, C30, C32, C33) showed a similar unit value compared to before, and the four industrials categories (C11, C17, C22, C31) showed a more unit value than before. With regard to the nine industrial categories (C14, C15, C16, C18, C19, C24, C26, C28, C29), the unit value decreased. Cases that companies examined before were the same as the companies examined in this study were analyzed. The result that the changes in the unit industrial water usage were reasonable was obtained. However, in some industrial categories (C17, C14, C24, C29), the unit value was changed by a small number of companies with large-scale water use or unit value of sampling had a large deviation. It was considered necessary to survey them periodically. The unit of industrial water usage derived by the survey in this study reflects the current industrial trends in 2016. Water use in manufacturing companies has continuously changed by the development of manufacturing technologies and simplification of manufacturing processes. In order to deal with this, it is considered necessary to survey the usage of industrial water periodically from a long-term perspective.

Seasonal Variation of Water Quality of the Watersheds in the Agricultural Environment Promotion Zone (환경농업조성지구내 용수원 및 채수시기별 수질비교)

  • Kim, Chan-Yong;Kim, Chang-Bae;Kim, Jong-Soo;Seo, Young-Jin;Yoon, Jae-Tak
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.3
    • /
    • pp.165-171
    • /
    • 2002
  • A study was conducted to investigate the seasonal changes in water quality of watershed in the Agricultural Environment Promotion Zone. Samples collected were 12 GW (ground water), 2 IW (irrigation water), 2 SW (stream water) in An-Dong City, 4 GW, 6 IW, 11 SW in Young-Yang Gun, and sampling was conducted separately during dry and rainy season. In the ground water, EC and ionic species, except pH, were higher than those in stream water, and especially $NO_3-N$ concentration exceeded the limitation of drinking water. Concentration of ions decreased as the sampling depth was far from the soil surface. During a rainy season, the concentrations of $NO_3-N$ and K in the stream water were slightly higher than those during season. COD was lower during dry season in Yong-Yang, while the trend was contrasted to An-Dong. These results suggest that ground water was polluted by fertilization and compost while streamwater was polluted by loss of soil and organic during the rainy season. Principal chemical components related with changing water quality were EC, $NO_3^-$, Ca, Mg, Na, $Cl^-$, $Cl^-$, $SO_4^-$ in ground water, whereas $NH_4-N$, K, Mg, $Cl^-$, $SO_4^-$ in stream water.

Sediment Discharge Based on a Time-Integrated Point Sample (연속점 채취를 이용한 유사량 계산)

  • 정관수
    • Water for future
    • /
    • v.29 no.2
    • /
    • pp.129-141
    • /
    • 1996
  • A procedure for computing total suspended sediment load is presented based on a single point-integrated sample, a power velocity distribution, and Laursen's sediment concentration distribution equation. The procedure was tested with field data from the Rio Grande River. Computed concentrations agreed well with depth-integrated measurements corrected for unmeasured load using nominal values of $\beta$, $\kappa$ and w. Even better agreement was obtained when site-specific data were used to define the x and z exponents of the velocity and concentration distributions. The difference between total suspended load computed using a single measurement and this procedure and conventional computations based on depthintegrated measurements is well within sampling error. There are major advantages in estimating total suspended load using a single time-integrated suspended-sediment point sample. Less field time is required; sampling costs are greatly reduced; and sampling can be more frequent and better timed to measure the changing sediment load. Single-point sampling makes automatic sampling procedures more feasible.

  • PDF

The Behaviors of Trace Metals (Fe, Mn, Co, Cu, Cd, Zn and Pb) in the Han River Estuary, Korea

  • Lee, Chang-Bok;Choi, Man-Sik
    • Journal of the korean society of oceanography
    • /
    • v.36 no.3
    • /
    • pp.59-71
    • /
    • 2001
  • In order to investigate the temporal variability of dissolved and particulate trace metals in the Han River, water samples were collected intermittently at two sites for 3 years (August 91 to December 94). Surface seawaters covering the range of salinity were also collected at the estuarine region to evaluate the role of estuary for the riverine fluxes of trace metals within the estuary during October 95 and 96. During the study period, dissolved metal concentrations in riverwaters varied by a factor of 5-10 for Fe, Ni, Co and Cu and 50-100 for Mn, Cd and Pb depending upon the water level; high concentration during the low water and low concentration in high water period except for Fe. The concentration of dissolved Fe increased with increasing water discharge. These concentration-discharge relationships of the studied trace metals are explained by the successive dilution of waters from two different origins, which can be presumably identified as anthropogenic discharges and watershed flushing. Although estuarine waters at early mixing region were not collected due to the difficulty of sampling, mixing behaviors of metals were inferred from the concentration-salinity relationships through the laboratory mixing experiment and field sampling, and distribution coefficients between dissolved and labile particulate phases. It is suggested that the Han River estuary plays a role of accumulating Fe, Mn, Co and Pb from riverine sources due to high turbidity caused by strong tidal current, whereas this system serves as a source of dissolved Cd due to release caused by extended residence time of riverine particles.

  • PDF