• 제목/요약/키워드: Water monitoring

검색결과 3,473건 처리시간 0.016초

Strengthen the Construction of Water Resources Monitoring Ability, Support the Strictest System of Water Resources management

  • Jiang, Yun-Zhong;Yi, Wan
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.27-33
    • /
    • 2012
  • At present, the overall water resources monitoring ability in China is weak since there is an absence of a sound monitoring system and comprehensive monitoring information. In addition to the problem of weak management ability in monitoring, measurement and information, it can hardly meet the need of implementing the strictest management system of water resource and also restricts the practice of the system to some extent. The production states the necessity of further development of water resources monitoring ability and points out the concept of "One Country, One Account" for constructing water resources information. There is an analysis on the demand on further development of water resources monitoring ability and profound discussion about the strategies for supporting "three red-line" management.

  • PDF

농업용수 정량화를 위한 경제적 수위계측망 설계 (Economical Design of Water Level Monitoring Network for Agricultural Water Quantification)

  • 김선주;권형중;김일정;김필식
    • 한국농공학회논문집
    • /
    • 제58권5호
    • /
    • pp.19-28
    • /
    • 2016
  • This study was to design the optimal locations of the water level monitoring to quantify the agricultural water use in irrigation area supplied from an agricultural reservoir. In most of agricultural areas without TM/TC (Tele-Monitoring and Tele-Control) or monitoring network, irrigation water have been supplied on conventional experience and agricultural reservoir have been operated based on the operating simulation results by HOMWRS (Hydrological Operation Model for Water Resources System). Therefore, this study quantified the amount of agricultural water use in an irrigation area (Musu Reservoir, Jincheon-gun) by establishing water level monitoring network and analyzed the agricultural water saving effect. According to the evaluation of the economic values for water saving effect, the saving agricultural water of 1.7 million ton was analyzed to have economic values of 0.85 million won as water for living, and 1.78 million won as water for industrial use. It is identified to secure economic feasibility of the new water monitoring network by establishing one monitoring point in the entrance, irrigation area and endpoint through the economic analysis.

수질자동모니터링시스템의 설치 현황과 전망 (A Real Time Monitoring for Water Quality of River)

  • 류재근
    • 한국물환경학회지
    • /
    • 제20권1호
    • /
    • pp.1-11
    • /
    • 2004
  • Water quality is monitored at 1,837 points which are streams and sources for water supply in Karea. The monitoring carry out the measurement of 16 parameters of pH, BOD, SS, DO and so on with once a month, and of other parameters such like heavy metal with once a quarter. But most of the monitoring is carried out uncontinuously, so it is very difficult to understand exactly the changes of water quality compared with continuous monitoring. Therefore, real time monitoring system was equipped with basic parameters such as pH, temperature, DO, turbidity and electric conductivity at 25 major sources of water supply after installation of Noryangjin and Dukdo in 1974. But the systems have some problems which cannot be considered the sampling sites to represent for water quality of stream of lake, and can be caused a change of water quality by long distance from analyzer to intake pipe. Therefore, it has carefully to evaluate selection of sample sites for real time monitoring system. Also, problems on the area has been to identify which parameters are best suited to monitoring stream of lake water and the differences, of analyzing results compared with manual analyzing. This paper presents some approaches to handle such problems, namely selection of sampling site and measurable parameters, to connect with bio-monitoring system solving a Limitation of measurable parameters, The bio-monitoring system of an early alarm that is desirable to perceive a toxic material inflow into stream can be applied to continuos water quality monitoring system effectively. Also, this paper presents to build a on line system transmitting immediately from a mobile analyzer house or container to main monitoring center the results of analyzer by a telemeter.

엔트로피 이론과 유전자 알고리즘을 결합한 상수관망의 최적 압력 계측위치 결정 (Determination of Optimal Pressure Monitoring Locations of Water Distribution Systems Using Entropy Theory and Genetic Algorithm)

  • 장동일;하금률;전환돈;강기훈
    • 상하수도학회지
    • /
    • 제26권1호
    • /
    • pp.1-12
    • /
    • 2012
  • The purpose of water distribution system is supplying water to users by maintaining appropriate pressure and water quality. For efficient monitoring of the water distribution system, determination of optimal locations for pressure monitoring is essential. In this study, entropy theory was applied to determine the optimal locations for pressure monitoring. The entropy which is defined as the amount of information was calculated from the pressure change due to the variation of demand reflected the abnormal conditions at nodes, and the emitter function (fire hydrant) was used to reproduce actual pressure change pattern in EPANET. The optimal combination of monitoring points for pressure detection was determined by selecting the nodes receiving maximum information from other nodes using genetic algorithm. The Ozger's and a real network were evaluated using the proposed model. From the results, it was found that the entropy theory can provide general guideline to select the locations of pressure sensors installation for optimal design and monitoring of the water distribution systems. During decision-making phase, optimal combination of monitoring points can be selected by comparing total amount of information at each point especially when there are some constraints of installation such as limitation of available budget.

수질자료의 불확실성이 수질관리에 미치는 영향 (Impacts of Uncertainty of Water Quality Data on Wate Quality Management)

  • 김건하
    • 한국물환경학회지
    • /
    • 제22권3호
    • /
    • pp.427-430
    • /
    • 2006
  • Uncertainty is one of the key issues of the water quality management. Uncertainty occurs in the course of all water quality management stages including monitoring, modeling, and regulation enforcement. To reduce uncertainties of water quality monitoring, manualized monitoring methodology should be developed and implemented. In addition, long-term monitoring is essential for acquiring reliable water quality data which enables best water quality management. For the water quality management in the watershed scale, fate of pollutant including its generation, transport and impact should be considered while regarding each stage of water quality management as an unit process. Uncertainties of each stage of water quality management should be treated properly to prevent error propagation transferred to the next stage of management for successful achievement of water quality conservation.

하천 퇴적물의 영양염류 모니터링 (Monitoring and Analysis of Nutrients in Sediments in the Riverbed)

  • 김건하;정우혁;이준배
    • 한국물환경학회지
    • /
    • 제22권5호
    • /
    • pp.838-845
    • /
    • 2006
  • Characterization of sediment in the riverbed is of importance for effective water quality management, yet have not been monitored sufficiently. This paper reports monitoring results of nutrient concentrations of sediments. Surface waters and sediments were sampled four times during rainy season at five monitoring points. Organics of overlying water were increased after high flow condition followed by decreasing tendencies. Soluble phosphorus fraction among total phosphorus was increased after high flow condition while total phosphorus was in decreasing tendencies. Monitoring result suggested that more extended monitoring scheme for flow rate, scouring velocity, and suspended material is required for analyzing relationship between water quality and sediment.

수량 및 수질관측 통합연계 운영 연구 (The Study on the Integrated Monitoring of Water Quantity and Quality Data)

  • 이재응;김문모;박성제
    • 한국방재학회 논문집
    • /
    • 제9권5호
    • /
    • pp.115-123
    • /
    • 2009
  • 수량과 수질에 관한 정보는 수자원 관리뿐만 아니라 수공구조물의 계획, 설계 및 운영에 필수적인 자료로 활용된다. 우리나라에서 수량과 수질에 대한 정보는 목적에 따라 여러 기관에 의해 관측되고 있어 많은 문제점이 발생하고 있다. 본 연구에서는 기술적 측면과 법, 제도 측면에서 수량과 수질 연계방안에 대하여 다음과 같은 다양한 대안을 제시하였다. 먼저 국가수문관측계획 및 국가물정보관리계획, 부처간 관측 표준과 정보인증 과정에 대한 협의, 관련 법령(하천법과 수질관련법)의 개정이 필요하다. 또한 현재 설치되어 있는 수량 수질관측소를 유지하고 신규관측소나 교체해야 할 관측소에 대해서는 통합관측을 수행하며, 자료의 관리 및 유통에 대한 단일 기구를 설립해야 한다. 그리고 관측기준을 명확히 확립해야 하며, 통합관리안을 만족시키기 위해 각 부처별로 산재된 정보를 중앙집중식으로 자료 관리를 수행해야 한다. 마지막으로 각 부처별 자료의 신뢰도 및 자료품질에 대한 검증이 우선적으로 수행되어야 한다. 다양한 이해관계 때문에 단기간 내에 수량과 수질 연계관측에 관한 문제들을 해결한다는 것은 어려운 일이나 본 연구에서 도출된 법, 제도, 기술적 제안사항들은 중, 장기적으로 수량과 수질 관측의 효율적인 연계방안에 도움이 될 수 있을 것으로 판단된다.

물환경측정망 자료를 활용한 금강수계 수질 유사도 평가 (Water Quality Similarity Evaluation in Geum River Using Water Quality Monitoring Network Data)

  • 김지현;채민희;윤조희;석광설
    • 환경영향평가
    • /
    • 제30권2호
    • /
    • pp.75-88
    • /
    • 2021
  • 본 연구에서는 금강 수계의 자동측정망 중 6개 지점을 선정하고, 이와 동일하거나 인근에 위치해 있는 수질측정망 지점을 대상으로 두 지점의 수질특성 파악하고 통계 분석을 통하여 상관성을 평가하였다. 또한, 수질 분석결과를 활용하여 수질 지수로 변환하고 등급으로 표현해 비교하였다. 연구에 필요한 자료는 최근 4년간(2016-2019)의 국가물환경측정망 데이터를 활용하였으며 수온, pH, EC, DO, TOC, TN, TP를 평가항목으로 선정하였다. 수질 분석 결과, 자동측정망과 수질측정망의 수질농도는 일부 측정값의 차이는 보였지만 대부분 지점에서 일정한 비로 변동하는 경향을 보였다. 항목 간 상관분석결과 수온, EC, DO 항목은 측정망간 상관성이 매우 높았고, TOC, TN, TP 항목은 기본항목에 비해 낮은 상관성을 보였으나 일부 측정망을 제외하고 0.7 이상(상관계수 r)의 높은 상관관계를 나타냈다. 수질 지수 분석결과 자동측정망 수질지수와 수질측정망 수질지수가 비슷한 경향을 보이는 것으로 평가되었으며, 두 결과 모두 하류로 갈수록 지수점수는 낮아져 오염도가 증가되고 있음을 쉽게 파악할 수 있었다.

상수도관망 시스템의 부식제어를 위한 수질모니터링 (Water Quality Monitoring for Corrosion Control in Waterworks System)

  • 이현동;곽필재;이지은;김영관
    • 상하수도학회지
    • /
    • 제23권1호
    • /
    • pp.77-87
    • /
    • 2009
  • In existing systems, the best method inhibiting corrosion control in water distribution systems is to reduce water corrosiveness. Water corrosion can be decreased by controlling water quality through simple water treatment in treatment plants. On this research, we study the characteristics of tab water qualities in domestic areas, assessment of corrosive water quality and the method of water quality monitoring. This review presents the method of water quality monitoring which is the most applicable. Monitoring for corrosion control in waterworks system is the most proper method; It can prevent serious accidents economically and reduce civil appeals. Surely we should assess corrosive water quality in tab water, and introduce water treatment methods to control corrosive water quality before monitoring for corrosion. According to a lot of researches, it has been proved that simple water treatments can reduce the pipe corrosion. In this review we should indicate that we do not control of the corrosive water quality due to domestic conditions, we should monitor the water quality basically. Therefore, we recognize how the existing water quality can cause problems on pipeline corrosion, how to deal with it. Then it will be possible to apply water quality monitoring for corrosion control in water distribution system. Monitoring for corrosion control can be expressed by LI index, it is already known in literatures. This review presents more simple method than existing methods than existing ones we expect to apply these methods to SCADA in the future.

2012-2016년 모니터링 자료를 이용한 낙동강 지류·지천 수질 특성 분석 (Water Quality Analysis in Nakdong River Tributaries Using 2012-2016 Monitoring Data)

  • 손영규;나승민;임태효;김상훈
    • 한국물환경학회지
    • /
    • 제33권6호
    • /
    • pp.680-688
    • /
    • 2017
  • Water quality monitoring for flow rates and BOD/COD/T-N/T-P/SS/TOC concentrations has been conducted in Nakdong river tributaries since 2011. In this study concentrations and loading rates of BOD, T-P, and TOC were analyzed to evaluate water quality monitoring stations using accumulated data at 206 tributary monitoring stations in Nakdong river 2012 ~ 2016. Average concentration ranges for 206 monitoring stations were 0.3 ~ 6.4 mg/L, 0.025 ~ 1.562 mg/L, and 0.6 ~ 10.7 mg/L for BOD, T-P, and TOC, respectively. Additionally, average loading rate ranges were 0.96 ~ 46,040 kg/d, 0.087 ~ 1,834 kg/d, and 1.51 ~ 80,425 kg/d for BOD, T-P, and TOC, respectively. Average concentration for BOD, T-P, and TOC at each monitoring station was evaluated using ambient water quality standards of rivers and water quality regulation level for medium-sized management areas. Average loading rate and specific loading rate (loading rate/drainage basin area) for BOD, T-P, and TOC at each monitoring station was considered to evaluate monitoring stations using suggested classification (BOD, TOC: -1, 1 ~ 10, 10 ~ 100, 100 ~ 1,000, and 1,000 ~ kg/d; T-P: -0.1. 0.1 ~ 1, 1 ~ 10, 10 ~ 100, and 100 ~ kg/d) Using results of this study, various water quality status maps were provided, and three evaluation methods were suggested to determine priority monitoring stations in Nakdong river for rational water quality control and tributaries basin management.