• Title/Summary/Keyword: Water modeling experiment

Search Result 110, Processing Time 0.03 seconds

A Study on the Effects of the Filter on Flow Pattern of the Traditional Gating System by the Water Modeling Experiment (수모델 실험을 이용한 전통 탕구계의 유동 양상에 미치는 필터의 영향 연구)

  • Hwang, Ho-Young;Nam, Cheol-Hee;Choi, Young-Sim;Hong, Jun-Ho
    • Journal of Korea Foundry Society
    • /
    • v.36 no.6
    • /
    • pp.208-214
    • /
    • 2016
  • Casting defects, which are closely related to entrapped air bubbles and metallic oxides, occur very frequently in the casting process. Many researchers have shown that these defects can be reduced by adopting an appropriate gating system design. But, it is difficult for field engineers to identify a specific gating system that is more appropriate for their products. In this study, we tried to draw a comparison of gating system designs with and without ceramic foam filters. A ceramic foam filter was added to the horizontal runner just after the sprue to prevent air bubble generation and to reduce turbulence without change of the gating system design. To verify the effects of initial pouring velocity, the experiment was conducted with four different amounts of water volume in the reservoir. Results of the water modeling experiment applying the filter showed remarkably changed flow characteristics. Although the study confirmed that use of the filter may change the flow characteristics, it needs to be noted that only filter use alone cannot solve all the problems caused by a poorly designed gating system.

Mixing Analysis of Oil Spilled into the River by GPS-equipped Drifter Experiment and Numerical Modeling (GPS 부자 실험과 수치모델링에 의한 하천에 유입된 유류오염물질의 거동 해석)

  • Jang, Juhyoung;Jong, Jaehun;Mun, Hyunsaing;Kim, Kyunghyun;Seo, Ilwon
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.3
    • /
    • pp.243-252
    • /
    • 2016
  • In cases of water pollution accidents, accurate prediction for arrival time and concentration of contaminants in a river is essential to take proper measures and minimize their impact on downstream water intake facilities. It is critical to fully understand the behavior characteristics of contaminants on river surface, especially in case of oil spill accidents. Therefore, in this study, the effects of main parameters of advection and diffusion of contaminants were analyzed and validated by comparing the results of Lagrangian particle tracking (LPT) simulation of Environmental Fluid Dynamic Code (EFDC) model with those of Global Position System (GPS)-equipped drifter experiment. Prevention scenario modeling was accomplished by taking cases of movable weir operation into account. The simulated water level and flow velocity fluctuations agreed well with observations. There was no significant difference in the speed of surface particle movement between 5 and 10 layer modeling. Therefore, 5 layer modeling could be chosen to reduce computational time. It was found that full three dimensional modeling simulated wind effects on surface particle movements more sensitively than depth-averaged two dimensional modeling. The diffusion range of particles was linearly proportional to horizontal diffusivity by sensitivity analysis. Horizontal diffusivity estimated from the results of GPS-equipped drifter experiment was 0.096 m2/sec, which was considered to be valid for applying the LPT module in this area. Finally, the scenario analysis results showed that particle movements could be stagnant when discharge from the upstream weir was reduced, implying the possibility of securing time for mitigation actions such as oil boom installation and wiping oil contaminants. The outcomes of this study can help improve the prediction accuracy of particle tracking simulation to establish the most suitable mitigation plan considering the combination of movable weir operation.

Pressure Wave Propagation in the Discharge Piping with Water Pool

  • Bang Young S.;Seul Kwang W.;Kim In-Goo
    • Nuclear Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.285-294
    • /
    • 2004
  • Pressure wave propagation in the discharge piping with a sparger submerged in a water pool, following the opening of a safety relief valve, is analyzed. To predict the pressure transient behavior, a RELAP5/MOD3 code is used. The applicability of the RELAP5 code and the adequacy of the present modeling scheme are confirmed by simulating the applicable experiment on a water hammer with voiding. As a base case, the modeling scheme was used to calculate the wave propagation inside a vertical pipe with sparger holes and submerged within a water pool. In addition, the effects on wave propagation of geometric factors, such as the loss coefficient, the pipe configuration, and the subdivision of sparger pipe, are investigated. The effects of inflow conditions, such as water slug inflow and the slow opening of a safety relief valve are also examined.

Physical Modeling of Aluminum-Foam Generation (알루미늄 발포공정의 물리적 모델링)

  • Oak S. M.;Moon Y. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.297-300
    • /
    • 2001
  • Physical modeling technique is applied to investigate foam generation in molten aluminum. By using room temperature water with specially designed equipment, the effects of stirrer type, fluid viscosity(glycerine added to water) and stirring velocity on foam generation behaviors are intensively analysed The distribution and size of bubbles varied with each process parameters but the most important parameters are stirring velocity and fluid viscosity. The results obtained from physical simulation have been confirmed by actual aluminum foam generation experiment at various process variables.

  • PDF

A study on the application of modified hydraulic conductivity to consider turbid water for open-cut riverbed infiltration process: numerical modeling approach (개착식 하상여과에서 탁수를 고려한 수정 투수계수 적용 연구: 수치모델링을 통한 접근)

  • Yang, Jeong-Seok;Kim, Il-Hwan;Jeong, Jae-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.9
    • /
    • pp.741-748
    • /
    • 2016
  • Laboratory scale model was constructed for open-cut riverbed infiltration experiment and four kinds of media were selected, medium sand, sand, volcanic rock, and gravel, for the experiment. Hydraulic conductivity for each medium and flow rate from the collecting pipe with functional screen were estimated from the experiment. Modified hydraulic conductivity scenarios considering turbid water (30~50 NTU) were applied in Visual MODFLOW modeling to analyze the effects of turbid water on the flow rate. Twenty-two scenarios were generated considering prticles in turbid water and applied to each medium cases in MODFLOW modeling. The minimum error was occurred when the gravel medium had 20% less hydraulic conductivities for the third layer-depth from the top and clay particles in turbid water might play a role in adsorption process to the surface of volcanic rock (2~5 mm). For medium sand case the error was also quite small when the mediumhas 5% less hydraulic conductivities for the second layer-depth from the top.

A Study on the Fuzzy Control in the Modeling Equipment of the Height-level of Water by the Personal Computer

  • Munakata, Tsunehiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.93.6-93
    • /
    • 2001
  • This paper describes the results on the fuzzy control in the modeling equipment of the height-level of water, in comparison with the results of PID control in the same system. By using two types of the fuzzy control, it is reported that the response rapidity, smoothness and complexity of the fuzzy control are superior to PID control by the experiment results.

  • PDF

Optimum Fire Extinguishing Modeling using Impact Factor Analysis on Water Mist System of Pool Fire (영향인자 분석을 통한 고임화재의 미분무수 최적소화 모델링)

  • Hwang, Won-Jun;Kim, Hwang-Jin;Lee, Sung-Eun;Kim, Sung-Won;Oh, Kyu-Hyung
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.84-89
    • /
    • 2009
  • In this study, the fire extinguishing experiment was performed using a water mist nozzle with variation of factors which affect on the extinguishing time. The variables were distance from nozzle center to fire location, droplet size, height of nozzle and opening or not. With the experimental data, interaction and sensitivity between factors were analysed with Mini tab and deduce a optimum model of fire extinguishing of water mist system. Based on the experiment and modeling of fire extinguishing with water mist system, the most important factor on extinguishing time is the distance from the center of nozzle to fire and the opening effect was small compare with other factors.

Sorption Kinetics of $Sr_{2+}$in Citric Acid-Water systems (Citric acid-water 혼합시스템에서 $Sr_{2+}$의 흡착특성)

  • 김계남;김진완;한운우;원휘준;오원진
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.133-136
    • /
    • 2000
  • Soil decontamination process was conducted to study adsorption and modeling characteristic of Sr$^{2+}$ ion using citric acid and water system with TRIGA soil. When the concentration of citric acid was increased, the BTC of Sr$^{2+}$ ion was to be closed to the BTC of $^3$$H_2O$ at experiments of soil adsorption. Beside, when the concentration of citric acid was under 0.01M Sr$^{2+}$ ion, BTLs was asymmetry. It was characteristic of nonequilibrium adsorption. R and $K_{p}$ , were decreased to be increased the concentration of citric acid. Asymmetry modeling was nearly the same to be compare with symmetry modeling in decontamination process, when the concentration of citric acid was decreased. Result of experiment was agree with asymmetry and symmetry model, when the concentration of citric acid was increased.eased.

  • PDF

Development of experiment technology for assessment of shotcrete lining long-term degradation in tunnels (터널 숏크리트 라이닝의 장기 내구성 평가를 위한 실험기법 개발)

  • Lim, Jong-Jin;Shin, Hyu-Soung;Bae, Gyu-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.439-444
    • /
    • 2005
  • Shotcrete lining is likely to be deteriorated due to the ground water which the lining is exposed to. Some tunnel collapses seemed to be affected by shotcrete degradation were reported. But there isn't any assessment method of shotcret long-term degradation. So, Experimental technology for shotcrete long-term degradation modeling was developed in this study. The shotcrete long-term degradation modeling, developed in other study in Korea Institute of Construction Technology, require the time-history of volume change. Digital strain observation system was used to acquire the time-history of volume change. To verify the Strain Observation Digital System, the measurement using the system was compared to the one using a micrometer. Through this process, The experiment for shotcrete long-term degradation modeling was set up.

  • PDF

MODELING OF A BUOYANCY-DRIVEN FLOW EXPERIMENT IN PRESSURIZED WATER REACTORS USING CFD-METHODS

  • Hohne, Thomas;Kliem, Soren
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.327-336
    • /
    • 2007
  • The influence of density differences on the mixing of the primary loop inventory and the Emergency Core Cooling (ECC) water in the downcomer of a Pressurised Water Reactor (PWR) was analyzed at the ROssendorf COolant Mixing (ROCOM) test facility. ROCOM is a 1:5 scaled model of a German PWR, and has been designed for coolant mixing studies. It is equipped with advanced instrumentation, which delivers high-resolution information for temperature or boron concentration fields. This paper presents a ROCOM experiment in which water with higher density was injected into a cold leg of the reactor model. Wire-mesh sensors measuring the tracer concentration were installed in the cold leg and upper and lower part of the downcomer. The experiment was run with 5% of the design flow rate in one loop and 10% density difference between the ECC and loop water especially for the validation of the Computational Fluid Dynamics (CFD) software ANSYS CFX. A mesh with two million control volumes was used for the calculations. The effects of turbulence on the mean flow were modelled with a Reynolds stress turbulence model. The results of the experiment and of the numerical calculations show that mixing is dominated by buoyancy effects: At higher mass flow rates (close to nominal conditions) the injected slug propagates in the circumferential direction around the core barrel. Buoyancy effects reduce this circumferential propagation. Therefore, density effects play an important role during natural convection with ECC injection in PWRs. ANSYS CFX was able to predict the observed flow patterns and mixing phenomena quite well.