• Title/Summary/Keyword: Water management manual

Search Result 71, Processing Time 0.021 seconds

Monitoring of non-point Pollutant Sources: Management Status and Load Change of Composting in a Rural Area based on UAV (UAV를 활용한 농촌지역 비점오염원 야적퇴비 관리상태 및 적재량 변화 모니터링)

  • PARK, Geon-Ung;PARK, Kyung-Hun;MOON, Byung-Hyun;SONG, Bong-Geun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.2
    • /
    • pp.1-14
    • /
    • 2019
  • In rural areas, composting is a source of non-point pollutants. However, as the quantitative distribution and loading have not been estimated, it is difficult to determine the effect of composting on stream water quality. In this study, composting datum acquired by unmanned aerial vehicle(UAV) was verified by using terrestrial LiDAR, and the management status and load change of the composting was investigated by UAV with manual control flight, thereby obtaining the basic data to determine the effect on the water system. As a result of the comparative accuracy assessment based on terrestrial LiDAR, the difference in the digital surface model(DSM) was within 0.21m and the accuracy of the volume was 93.24%. We expect that the accuracy is sufficient to calculate and utilize the composting load acquired by UAV. Thus, the management status of composting can be investigated by UAV. As the total load change of composting were determined to be $1,172.16m^3$, $1,461.66m^3$, and $1,350.53m^3$, respectively, the load change of composting could be confirmed. We expect that the results of this study can contribute to efficient management of non-point source pollution by UAV.

Quality Control to Improve Reliability of Automatic Water Quality Data (수질자동측정망 자료의 신뢰성 제고를 위한 정도관리)

  • Lim, Byung-Jin;Hong, Eun-Young;Kim, Hyun-Ook
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.338-344
    • /
    • 2010
  • The automatic water quality monitoring system (AWQMS) have been installed to immediately response to any pollution incident. It also make it possible to conduct the task efficiently regarding water quality control. The purpose of this study is to enhance reliability by securing accuracy of automatic water quality data through quality assessment (QA) for temperature, pH, dissolved oxygen (DO), electric conductivity (EC), total organic carbon (TOC). The result of comparison between manual and automatic data, relative accuracy of general items (temperature, pH, EC, DO) and TOC were mostly satisfied with guideline (i.e. less than 20%). On the other hand, relative accuracy of DO between sampling site and housing site was somewhat against the guideline. The contamination by attaching algae and microorganism in the pipeline is considered as main cause. After backwashing the pipeline, DO concentration was increased up to 53%. Therefore, pipeline management is recognizable as important thing to secure reliability of water quality data.

Analysis of Applicability by Filter Technique for Water Level Correction of Agricultural Canal (농업용 수로부의 수위 보정을 위한 필터기법별 적용성 분석)

  • Joo, Donghyuk;Na, Ra;Kim, Ha-Young;Choi, Gyu-hoon;Yun, Hyung Chang;Park, Sang-Bin;Yoo, Seung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.5
    • /
    • pp.51-68
    • /
    • 2023
  • Due to the recent integrated water management policy, it is important to identify a reliable supply amount for establishing an agricultural water supply plan. In order to identify the amount of agricultural water supply, it is essential to calculate the discharge by measuring the water level and flow velocity of reservoirs and canal agricultural water, and quality control to ensure reliability must be preceded. Unlike agricultural reservoirs, canal agricultural water are more sensitive to the surrounding environment and reservoir irrigation methods (continuous, intermittent irrigation, etc.), making it difficult to estimate general water level patterns and at the same time a lot of erroneous data. The Korea Rural Community Corporation is applying a filter technique as a quality control method capable of processing large quantities and real-time processing of canal agricultural water level data, and applicability evaluation is needed. In this study, the types of errors generated by the automatic water level measurement system were first determined. In addition, by using the manual quality control data, a technique with high applicability is derived by comparing and analyzing data calibrated with Gaussian, Savitzky-Golay, Hampel, and Median filter techniques, RMSE, and NSE, and the optimal parameters of the technique range was derived. As a result, the applicability of the Median filter was evaluated the highest, and the optimal parameters were derived in the range of 120min to 240min. Through the results of this study, it is judged that it can be used for quantitative evaluation to establish an agricultural water supply plan.

Weed Ecology and Effective Weed Control Technology in Direct-Seeded Rice (벼 직파재배(直播栽培)의 잡초발생(雜草發生) 생태(生態)와 효과적(效果的)인 방제법(防除法))

  • Kim, Soon-Chul
    • Korean Journal of Weed Science
    • /
    • v.12 no.3
    • /
    • pp.230-260
    • /
    • 1992
  • The paper was reviewed the research results on weed dynamics and effective control methods in direct-seeded rice crop. Direct seeding method resulted in drastic increment of weed growth compared to transplanting method and also changed in troublesome weed flora. Two to three fold more weeds were harvested at the direct seeded rice and weed flora of dominant species shifted toward $C_4$type grass weeds. Some of the important troublesome weeds in direct seeded rice were Echinochloa crus-galle, Oryza saliva ssp spontanea, Leptochloa chinensis. Setaria viridus. Digitaria adsendens, Sesbania exaltata, Aeschynomene indica, Algae, etc. Yield loss due to weed competiton was about 40-60% for water-seeded and about 70-100% for dry-seeded rice while these for transplanted rice were about 25-35% for mechanical transplanting and about 10-20% for manual transplanting, respectively. Integrated weed management concept was neede to approach weed control effectively. Several cultural technologies were very effective to suppress the weed growth. These were tillage operation, water management, seeding date and seeding rate. Crop residues of barley, rice, wheat, oat and italian ryegrass were also effectivly suppressed the paddy weeds particularly to Potamogeton distiuctus, a perennial broadleaf weed. A pathogen of Epicoccosorus nematosporus identified from Eleocharis kuroguwai was an excellent potential bioagent to control the most troublesome perennial sedge weed of E. Kuroguwai without arising any detrimental effect. The herbicidal efficacy of this pathogen was as high as bentazon herbicide. Plant growth regulator of paclobutrazol (pp-333) was another possible alternative to reduce the herbicide use. In current, herbicide exhibited the most conspicuous results to control weeds in direct-seeded rice even though the application technologies were not fully established. Recommendations for herbicide application were suggested for in both water-and dry-seeded rice in USA, Japan and Korea, respectively. To make better and comprehensive recommendations further studies on weed ecology and herbicide development were emphasized.

  • PDF

Cause Analysis and Improvement Suggestion for Flood Accident in Dorimcheon - Focused on the Tripping and Isolation Accidents (도림천에서 발생한 고립 및 실족사고의 원인분석을 통한 개선방안 도출에 관한 연구)

  • Lee, Kyung-Su;Jeon, Jong-Hyeong;Kim, Tai-Hoon;Kim, Hyunju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.25-36
    • /
    • 2021
  • This study analyzed the causes of flood accidents, such as isolation and lost footing accidents in Dorimcheon, to provide legal and institutional improvements. For cause analysis, Field Investigation, Stakeholder Interview, Report, manual, Law et al. Review, Analysis of water level change characteristics, automatic alarm issuance standard level analysis, and evacuation time according to river control were evaluated. Dorimcheon has the characteristics of a typical urban river, which is disadvantageous in terms of water control. In addition, the risk of flood accidents is high because the section where fatal accidents occur forms sharply curved channels. Tripping and isolation accidents occur in the floodplain watch and evacuation stage, which is the stage before the flood watch and warning is issued. Because floodplain evacuation is issued only when the water level rises to the floodplain, an immediate response according to the rainfall forecast is essential. Furthermore, considering that the rate of water level rise is up to 2.62 cm/min in Sillimgyo 3 and Gwanakdorimgyo, sufficient evacuation time is not secured after the floodplain watch is issued. Considering that fatal accidents occurred 0.46 m below the standard water level for the flood watch, complete control is very important, such as blocking the entry of rivers to prevent accidents. Based on these results, four improvement measures were suggested, and it is expected to contribute to the prevention of Tripping and Isolation Accidents occurring in rivers.

Design and Implementation of irrigation management embedded system controlling substrate moisture directly (배지수분 직접제어에 의한 급액관리 임베디드 시스템 설계 및 구현)

  • Lee, Han-Kwon;Byun, Young-Ki;Lee, Seung-Hyuk;Pack, Hyun-Ok;Cho, Tae-Kyung;Kim, Young-Shik;Park, Byoung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.188-194
    • /
    • 2006
  • Since the late 1920's possibility of commercial hydroponics was testified practically. Hydroponics is used as environmentally friendly agriculture production system recently with high effectiveness. Now that existing irrigation control systems such as time control or solar radiation control cannot satisfy stable water content in root substrates, the needs for new irrigation system keep increasing. In this paper, we proposed environmentally friendly automatic irrigation management system by employing automation system based on electronic control system, which could solve problems based on manual irrigation management system. In addition, it suggested to be applied to any crops and will be able to overcome existing limit in irrigation by measuring the water content of root substrate in realtime.

  • PDF

Evaluation of Agricultural Reservoirs Operation Guideline Using K-HAS and Ratio Correction Factor during Flood Season (수리·수문설계시스템 및 비율보정계수 기법을 활용한 농업용 저수지의 홍수기 운영기준 평가)

  • Jung, Hyoung-mo;Lee, Sang-Hyun;Kim, Kyounghwan;Kwak, Yeong-cheol;Choi, Eunhyuk;Yoon, Sungeun;Na, Ra;Joo, Donghyuk;Yoo, Seung-Hwan;Yoon, Gwang-sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.4
    • /
    • pp.97-104
    • /
    • 2021
  • Despite the practical limitations of calculating the amount of inflow and supply related to the operation of agricultural reservoirs, the role of agricultural reservoirs is gradually being emphasized. In particular, as interest in disaster safety has increased, the demand for preliminary measures to prepare for disasters has been rising, for instance, pre-discharging agricultural reservoirs for flood control. The aim of this study is to analyze the plans for the flood season reservoir operation considering pre-discharge period and water level limit. Accordingly, we optimized the simulation of daily storage using the ratio correction factor (RCFs) and analyzed the amount of inflow and supply using K-HAS. In addition we developed the drought determination coefficient (k) as a indicator of water availability and applied it for supplementing the risk level criteria in the Drought Crisis Response Manual. The results showed that it would be difficult to set the water level limit during the flood period in the situation of little water supply for flood control in agricultural reservoirs. Therefore, it is necessary to operate the reservoir management regulations after measures such as securing additional storage water are established in the future.

Treatment of residues of excavated carcasses burials (가축매몰지 소멸시 잔존물 처리방안)

  • Kim, Geonha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.3
    • /
    • pp.269-277
    • /
    • 2018
  • Burials for the rapid disposal of carcasses have diverse and profound effects on the rural living condition, natural environment, and local economy throughout construction, management and final destruction of burials. In this study, possible residue excavated from standard burials, storage using FRP (Fiberglass Reinforced Plastic) tanks, and microbial-treated burials are characterized as carcasses, contaminated soil by leachate, and wasted plastic film. Treatment technologies for volume reduction of the residue including composting, rendering, and thermal hydrolysis were investigated. If the solid and liquid residues generated during volume reduction treatment are directly transferred to the environmental facilities, it may cause disorder due to high concentrations of organics, antibiotics, and lipid. Benefits and drawbacks of composting as a volume reduction techniques are extensively investigated. We also discussed that proper treatment of excavated soils and the reusing the treated soil as agricultural purpose. For the protection of public health and worker's hygiene, treatment criteria including produced residue qualities, and quality standards for the treated soil as agricultural use are required. In addition, Scientific manual for the proper treatment of residues is required. It is necessary to consider the establishment of a pretreatment facility to the occurrence of large-scale residue treatment.

Performance Evaluation of Combined Sewer Overflow Treatment using Filtration Pilot Device (파일럿 여과장치를 이용한 합류식하수관 월류수 처리성능 평가)

  • Lee, Jun Ho;Shin, Young Gyun
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.5
    • /
    • pp.409-417
    • /
    • 2019
  • In this study, a $480m^3/day$ pilot device was constructed through laboratory experiments based on the Ministry of Environment manual. The purpose of this study was to analyze the characteristics of CSO treatment and backwashing characteristics by applying the pilot device to the field. The purpose of this study was to acquire the basic data necessary for the design and operation management of the real scale filtration type non-point pollution control system. The filtration was conducted while maintaining the linear velocity of 20m/hour. The CSO treatment efficiencies of the pilot devices were 0.4-76.1%(mean 49.0 %), SS 51.4-91.6%(mean 77.8%), COD 22.2-59.4% (mean 38.3%) and TP 14.5-52.6%(mean 38.1%),respectively. The correlation coefficient between SS and the turbidity of influent water was 0.90, higher than that of CSO. To operate the treatment system effectively, the turbidity can be easily measured in real time as the monitoring item is the most appropriate because SS is the main target substance of the non-point source. As a result of analyzing the adsorbent treatment characteristics of PP filter material applied to this pilot device, the average particle diameter range of influent was $4.6-40.1{\mu}m$(mean $21.2{\mu}m$) and the treated water was $0.9-24.5{\mu}m$(mean $6.4{\mu}m$), respectively. Particles of approximately 10m or less are leached out, and so it is necessary to compensate for the raw water containing micro particulate matter.

Impact Evaluation of Water Footprint on Stages of Drainage Works (배수공 각 작업 단계별 물발자국 영향평가)

  • Chen, Di;Kim, Joon-Soo;Batagalle, Vinuri;Kim, Byung-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.225-231
    • /
    • 2020
  • Fresh water that can be used by a person of the total amount of water on the planet is increased because it is less than 0.01 % except underground water, ice and snow, etc. water management response need. In order to protect and efficiently utilize water resources, major countries are conducting water footprint studies that can quantitatively estimate the amount of water put into the operating phase of the resource harvesting phase, mainly agriculture. Korea has also recently developed a number of policies in order to cope with water shortages, and in the construction industry, as well as the need for basic research to support it has been emphasized. This study was constructed DB up to the raw material harvesting step, the transport step, the production stage in order to estimate the water consumption of resources to be put into the work process to target the drainage of the road. Water usage estimation method was utilized the method presented in the Water Footprint Manual and the environmental score card certification guide, unit water usage each drainage main method was calculated after estimating the water footprint considering the water character factor, indirect water and the direct water, the water consumption factor of material input to each process. Brown asphalt, rebar, remicon of the drainage material as a result of the water footprint calculation accounted for 97 % of the total. Drainage method is a culvert, a side channel, a culvert wing wall, reinforced concrete open channel accounted for 92.2 % of the total. Drainage total step-by-step calculated water consumption and water footprint was found in order of raw material harvesting step, transport stage, production stage. Water footprint each drainage method or total drainage material calculated in this study can be used as a base data in the agricultural and construction sectors. In order to increase the reliability of the analysis, it is believed that further overseas databases will be needed for continuous review and research.