• Title/Summary/Keyword: Water level prediction

Search Result 341, Processing Time 0.042 seconds

Shelf-life Estimation and Sorption Characteristics of Coated Ascorbic Acid by Fluidized Bed Coating (유동층 코팅 처리한 Ascorbic acid의 흡습특성 및 저장기간 예측)

  • Park, Su-Jung;Youn, Kwang-Sup
    • Food Science and Preservation
    • /
    • v.15 no.3
    • /
    • pp.332-339
    • /
    • 2008
  • This study was performed to investigate the sorption characteristics and shelf-life of coated ascorbic acid Stability of ascorbic acid, which oxidizes easily during storage and processing, was achieved by applying a fluidized bed coating using Zein-DP and HPMC-FCC as covering materials. The monolayer moisture content calculated using the GAB equation showed a higher level of significance than when calculated using the BET equation. The fit to the isotherm curve was in the order of Halsey, Caurie, Oswin and Khun. The equilibrium relative humidity prediction model was established in terms of time and water activity, it had higher significance. The stability of the coated ascoribic acid during storage was investigated in terms of radical-scavenging activity, which decreased with increasing time of storage and was more affected at higher storage temperatures. The quality reduction rate constant (k) was calculated by a first-order reaction rate. The reaction rate constant increased with increasing storage temperature. The shelf-life of Zein-DP-coated ascorbic acid was estimated to be 45.83 days at 20C and 63.19 days at 10C, and the shelf-life for HPMC-FCC-coated ascorbic acid was estimated to be 28.84 days at 20C and 36.14 days at 10, the ascorbic acid was 24.52 days at $20^{\circ}C$ and 27.22 days at $10^{\circ}C$, respectively. Therefore, the fluidized bed coating effectively increased the stability of ascorbic acid.

Characteristics of Material Function Related to Permeability and Compressibility for Soft Clay Ground (투수 및 압축에 대한 연약 점토지반의 물질함수 특성)

  • Lee, Song;Jeon, Je-Sung;Yi, Chang-Tok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.183-194
    • /
    • 2004
  • It's essential process to study non-linear material function related to characteristics of compressibility and permeability when we predict the consolidation behavior of soft clay ground. In this study, laboratory tests were conducted to find out the material function using marine clay. Standard oedometer test and Rowe cell test were performed with conditions, which were classified into vertical drainage only, radial drainage only and vertical-radial drainage case. Modified oedometer test equipment was developed to find out the material function and special extrusion device was originated to minimize the sample disturbance effect. Reliability of the results in modified oedometer test could be confirmed by comparing with the Rowe cell's one. Effective stress - void ratio - permeability relations were analyzed using all testing results. As a result, void ratio with effective stress level could be expressed by the power function and permeability with void ratio could be expressed by exponential function. In soft clay with high initial water content and low shear strength, non-linear characteristics related to compressibility and permeability varied with wide range by the effective stress levels. It's important to note that non-linearity of the material function should be considered at prediction of the consolidation behavior.

Relationship between Corrosion in Reinforcement and Influencing Factors Using Half Cell Potential Under Saturated Condition (습윤 상태에서의 반전위를 이용한 철근 부식과 영향 인자 간의 상관성 분석)

  • Jeong, Gi-Chan;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.191-199
    • /
    • 2021
  • In this study, the correlation between the influencing factors on corrosion and Half Cell Potential(HCP) measurement was analyzed considering the three levels of W/C ratio, cover depth, and chloride concentration. The HCP increased with enlarged cover depth, so it was confirmed that the increment of cover depth was effective for control of corrosion. Based on the criteria, the case of 60mm cover depth showed excellent corrosion control with under -200mV, indicating increase of cover depth is an effective method for reducing intrusion of external deterioration factors. When fresh water was injected to the upper part of specimens, very low level of HCP was monitored, but in the case that concentrations of chloride were 3.5% and 7.0%, HCP dropped under -200mV. In addition, the case with high volume of unit binder showed lower HCP measurement like increasing cover depth. Multiple regression analysis was performed to evaluate the correlation between the corrosive influence factors and HCP results, showing high coefficient of determination of 0.97. However, there were limitations such as limited number of samples and measuring period. Through the additional corrosion monitoring and chloride content evaluation after dismantling the specimen, more reasonable prediction can be achieved for correlation analysis with relevant data.

Assessing Future Climate Change Impact on Hydrologic Components of Gyeongancheon Watershed (기후변화가 경안천 유역의 수문요소에 미치는 영향 평가)

  • Ahn, So-Ra;Park, Min-Ji;Park, Geun-Ae;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.1
    • /
    • pp.33-50
    • /
    • 2009
  • The impact on hydrologic components considering future potential climate, land use change and vegetation cover information was assessed using SLURP (Semi-distributed Land-Use Runoff Process) continuous hydrologic model. The model was calibrated (1999 - 2000) and validated (2001 - 2002) for the upstream watershed ($260.4\;km^2$) of Gyeongancheon water level gauging station with the coefficient of determination and Nash-Sutcliffe efficiency ranging from 0.77 to 0.60 and 0.79 to 0.60, respectively. Two GCMs (MIROC3.2hires, ECHAM5-OM) future weather data of high (A2), middle (A1B) and low (B1) emission scenarios of the IPCC (Intergovernmental Panel on Climate Change) were adopted and the data was corrected by 20C3M (20th Century Climate Coupled Model) and downscaled by Change Factor (CF) method using 30 years (1977 - 2006, baseline period) weather data. Three periods data of 2010 - 2039 (2020s), 2040 - 2069 (2050s), 2070 - 2099 (2080s) were prepared. To reduce the uncertainty of land surface conditions, future land use and vegetation canopy prediction were tried by CA-Markov technique and NOAA NDVI-Temperature relationship respectively. MIROC3.2 hires and ECHAM5-OM showed increase tendency in annual streamflow up to 21.4 % for 2080 A1B and 8.9 % for 2050 A1B scenario respectively. The portion of future predicted ET about precipitation increased up to 3 % in MIROC3.2 hires and 16 % in ECHAM5-OM respectively. The future soil moisture content slightly increased compared to 2002 soil moisture.

Development of simple tools for algal bloom diagnosis in agricultural lakes (농업용 호소의 조류 발생 진단을 위한 간편 도구의 개발)

  • Nam, Gui-Sook;Lee, Seung-Heon;Jo, Hyun-Jung;Park, Joo-Hyun;Cho, Young-Cheol
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.3
    • /
    • pp.433-445
    • /
    • 2019
  • This study was designed to develop simple tools to easily and efficiently predict the occurrence of algal bloom in agricultural lakes. Physicochemical water quality parameters were examined to reflect the phytoplankton productivity in 182 samples collected from 15 agricultural lakes from April to October 2018. Total phytoplankton abundance was significantly correlated with chlorophyll-a (Chl-a) (r=0.666) and Secchi depth (SD) (r= -0.351). The abundances of cyanobacteria and harmful cyanobacteria were also correlated with Chl-a (r=0.664, r=0.353) and SD (r= -0.340, r= -0.338), respectively, but not with total nitrogen (TN) and total phosphorus (TP). The Chl-a concentration was correlated with SD (r= -0.434), showing a higher similarity than phytoplankton abundance. Therefore, Chl-a and SD were selected as diagnostic factors for algal bloom prediction, instead of analyzing the standing crop of harmful cyanobacteria used in algae alarm systems. Specifically, accurate diagnoses were made using realtime SD measurements. The algal bloom diagnostic tool is an inverse cone-shaped container with an algal bloom diagnosis chart that modified SD and turbidity measurement methods. Lake water was collected to observe the number of rings visible in the container or the number indicated in each ring, depending on the degree of algal bloom,and to determine the final stage of algal blooming by comparison to the colorimetric level on the diagnosis chart. For an accurate diagnosis, we presented 4-step diagnostic criteria based on the concentration of Chl-a and the number of rings and a fan-shaped algal bloom diagnosis chart with Hexa code names. This tool eliminated the variables and errors of previous methods and the results were easily interpreted. This study is expected to facilitate the diagnosis of algal bloom in agricultural lakes and the establishment of an efficient algal bloom management plan.

Smart farm development strategy suitable for domestic situation -Focusing on ICT technical characteristics for the development of the industry6.0- (국내 실정에 적합한 스마트팜 개발 전략 -6차산업의 발전을 위한 ICT 기술적 특성을 중심으로-)

  • Han, Sang-Ho;Joo, Hyung-Kun
    • Journal of Digital Convergence
    • /
    • v.20 no.4
    • /
    • pp.147-157
    • /
    • 2022
  • This study tried to propose a smart farm technology strategy suitable for the domestic situation, focusing on the differentiation suitable for the domestic situation of ICT technology. In the case of advanced countries in the overseas agricultural industry, it was confirmed that they focused on the development of a specific stage that reflected the geographical characteristics of each country, the characteristics of the agricultural industry, and the characteristics of the people's demand. Confirmed that no enemy development is being performed. Therefore, in response to problems such as a rapid decrease in the domestic rural population, aging population, loss of agricultural price competitiveness, increase in fallow land, and decrease in use rate of arable land, this study aims to develop smart farm ICT technology in the future to create quality agricultural products and have price competitiveness. It was suggested that the smart farm should be promoted by paying attention to the excellent performance, ease of use due to the aging of the labor force, and economic feasibility suitable for a small business scale. First, in terms of economic feasibility, the ICT technology is configured by selecting only the functions necessary for the small farm household (primary) business environment, and the smooth communication system with these is applied to the ICT technology to gradually update the functions required by the actual farmhouse. suggested that it may contribute to the reduction. Second, in terms of performance, it is suggested that the operation accuracy can be increased if attention is paid to improving the communication function of ICT, such as adjusting the difficulty of big data suitable for the aging population in Korea, using a language suitable for them, and setting an algorithm that reflects their prediction tendencies. Third, the level of ease of use. Smart farms based on ICT technology for the development of the Industry6.0 (1.0(Agriculture, Forestry) + 2.0(Agricultural and Water & Water Processing) + 3.0 (Service, Rural Experience, SCM)) perform operations according to specific commands, finally suggested that ease of use can be promoted by presetting and standardizing devices based on big data configuration customized for each regional environment.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016 (설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.

Manganese and Iron Interaction: a Mechanism of Manganese-Induced Parkinsonism

  • Zheng, Wei
    • Proceedings of the Korea Environmental Mutagen Society Conference
    • /
    • 2003.10a
    • /
    • pp.34-63
    • /
    • 2003
  • Occupational and environmental exposure to manganese continue to represent a realistic public health problem in both developed and developing countries. Increased utility of MMT as a replacement for lead in gasoline creates a new source of environmental exposure to manganese. It is, therefore, imperative that further attention be directed at molecular neurotoxicology of manganese. A Need for a more complete understanding of manganese functions both in health and disease, and for a better defined role of manganese in iron metabolism is well substantiated. The in-depth studies in this area should provide novel information on the potential public health risk associated with manganese exposure. It will also explore novel mechanism(s) of manganese-induced neurotoxicity from the angle of Mn-Fe interaction at both systemic and cellular levels. More importantly, the result of these studies will offer clues to the etiology of IPD and its associated abnormal iron and energy metabolism. To achieve these goals, however, a number of outstanding questions remain to be resolved. First, one must understand what species of manganese in the biological matrices plays critical role in the induction of neurotoxicity, Mn(II) or Mn(III)? In our own studies with aconitase, Cpx-I, and Cpx-II, manganese was added to the buffers as the divalent salt, i.e., $MnCl_2$. While it is quite reasonable to suggest that the effect on aconitase and/or Cpx-I activites was associated with the divalent species of manganese, the experimental design does not preclude the possibility that a manganese species of higher oxidation state, such as Mn(III), is required for the induction of these effects. The ionic radius of Mn(III) is 65 ppm, which is similar to the ionic size to Fe(III) (65 ppm at the high spin state) in aconitase (Nieboer and Fletcher, 1996; Sneed et al., 1953). Thus it is plausible that the higher oxidation state of manganese optimally fits into the geometric space of aconitase, serving as the active species in this enzymatic reaction. In the current literature, most of the studies on manganese toxicity have used Mn(II) as $MnCl_2$ rather than Mn(III). The obvious advantage of Mn(II) is its good water solubility, which allows effortless preparation in either in vivo or in vitro investigation, whereas almost all of the Mn(III) salt products on the comparison between two valent manganese species nearly infeasible. Thus a more intimate collaboration with physiochemists to develop a better way to study Mn(III) species in biological matrices is pressingly needed. Second, In spite of the special affinity of manganese for mitochondria and its similar chemical properties to iron, there is a sound reason to postulate that manganese may act as an iron surrogate in certain iron-requiring enzymes. It is, therefore, imperative to design the physiochemical studies to determine whether manganese can indeed exchange with iron in proteins, and to understand how manganese interacts with tertiary structure of proteins. The studies on binding properties (such as affinity constant, dissociation parameter, etc.) of manganese and iron to key enzymes associated with iron and energy regulation would add additional information to our knowledge of Mn-Fe neurotoxicity. Third, manganese exposure, either in vivo or in vitro, promotes cellular overload of iron. It is still unclear, however, how exactly manganese interacts with cellular iron regulatory processes and what is the mechanism underlying this cellular iron overload. As discussed above, the binding of IRP-I to TfR mRNA leads to the expression of TfR, thereby increasing cellular iron uptake. The sequence encoding TfR mRNA, in particular IRE fragments, has been well-documented in literature. It is therefore possible to use molecular technique to elaborate whether manganese cytotoxicity influences the mRNA expression of iron regulatory proteins and how manganese exposure alters the binding activity of IPRs to TfR mRNA. Finally, the current manganese investigation has largely focused on the issues ranging from disposition/toxicity study to the characterization of clinical symptoms. Much less has been done regarding the risk assessment of environmenta/occupational exposure. One of the unsolved, pressing puzzles is the lack of reliable biomarker(s) for manganese-induced neurologic lesions in long-term, low-level exposure situation. Lack of such a diagnostic means renders it impossible to assess the human health risk and long-term social impact associated with potentially elevated manganese in environment. The biochemical interaction between manganese and iron, particularly the ensuing subtle changes of certain relevant proteins, provides the opportunity to identify and develop such a specific biomarker for manganese-induced neuronal damage. By learning the molecular mechanism of cytotoxicity, one will be able to find a better way for prediction and treatment of manganese-initiated neurodegenerative diseases.

  • PDF

A Study on the Visual Preference of Users according to the Location of Benches at Urban Community Parks (도시공원에서 벤치의 배치장소에 따른 이용자의 시각적 선호도에 관한 연구)

  • 유상완;문석기;권상준
    • Archives of design research
    • /
    • v.13 no.2
    • /
    • pp.95-102
    • /
    • 2000
  • The purpose of this study is to find out what is the preference of users according to the location of benches at urban community parks. This location of benches is seperated into 4 patterns according to arranging pattern of water space, a walk, pergola and shelter, greenspace. To investigate the visual preference is examined by analyzing visual volume of 4 patterns. Results are as follows; 1. Factor analysis by the total data showed that 5 factors explain 60.40 percent of total variance of the location of bench visual character. They were classified by the sensitive factor, visual factor, physical-individual factor, distinct factor, density factor. Among 5 factors, the sensitive factor which represented psychological reaction was appreciated to be highest. 2. Most of 20 items showed the following scores of mean values in sementic differential experiment : Spot 1->Spot 4-> 2-> 3. The mean values between arrangement place locational differences showed significantly, that could explain to be a violent contrast between the natural factors(weater space, green space, etc) and the artificial factors (around of pergola, shelter, etc)

  • PDF

Landslide Susceptibility Mapping Using Deep Neural Network and Convolutional Neural Network (Deep Neural Network와 Convolutional Neural Network 모델을 이용한 산사태 취약성 매핑)

  • Gong, Sung-Hyun;Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1723-1735
    • /
    • 2022
  • Landslides are one of the most prevalent natural disasters, threating both humans and property. Also landslides can cause damage at the national level, so effective prediction and prevention are essential. Research to produce a landslide susceptibility map with high accuracy is steadily being conducted, and various models have been applied to landslide susceptibility analysis. Pixel-based machine learning models such as frequency ratio models, logistic regression models, ensembles models, and Artificial Neural Networks have been mainly applied. Recent studies have shown that the kernel-based convolutional neural network (CNN) technique is effective and that the spatial characteristics of input data have a significant effect on the accuracy of landslide susceptibility mapping. For this reason, the purpose of this study is to analyze landslide vulnerability using a pixel-based deep neural network model and a patch-based convolutional neural network model. The research area was set up in Gangwon-do, including Inje, Gangneung, and Pyeongchang, where landslides occurred frequently and damaged. Landslide-related factors include slope, curvature, stream power index (SPI), topographic wetness index (TWI), topographic position index (TPI), timber diameter, timber age, lithology, land use, soil depth, soil parent material, lineament density, fault density, normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) were used. Landslide-related factors were built into a spatial database through data preprocessing, and landslide susceptibility map was predicted using deep neural network (DNN) and CNN models. The model and landslide susceptibility map were verified through average precision (AP) and root mean square errors (RMSE), and as a result of the verification, the patch-based CNN model showed 3.4% improved performance compared to the pixel-based DNN model. The results of this study can be used to predict landslides and are expected to serve as a scientific basis for establishing land use policies and landslide management policies.