• Title/Summary/Keyword: Water lettuce

Search Result 195, Processing Time 0.026 seconds

Survival of Bacillus cereus and Its Transfer from Agricultural Product-Contact Surfaces to Lettuce (Bacillus cereus의 농산물 접촉 표면 재질별 생존력 및 상추로의 교차오염도 조사)

  • Kim, Se-Ri;Seo, Min-Kyoung;Kim, Won-Il;Ryu, Kyoung Yul;Kim, Byung-Seok;Ryu, Jae-Gee;Kim, Hwang-Yong
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.4
    • /
    • pp.253-259
    • /
    • 2014
  • This study was conducted to investigate survival of Bacillus cereus (B. cereus) on stainless steel and polyvinyl chloride (PVC) and its transfer from two material to lettuce. The stainless steel and PVC were innoculated with B. cereus and stored at 6 combination conditions (temperature : $20^{\circ}C$ and $30^{\circ}C$, relative humidity (RH) : 43%, 69%, and 100%). Although the total numbers of B. cereus at RH 43% and RH 69% were reduced by 3.53-4.00 log CFU/coupon within 24 h regardless of material type, the spore numbers of B. cereus was lasted at 3.0 log CFU/coupon. When two materials were stored at $30^{\circ}C$, RH 100%, the spore numbers of B. cereus was rapidly increased by 3.0 log CFU/coupon. In addition, the reduction rate of B. cereus was decreased in the presence of organic matter. Transfer rate of B. cereus from surface of stainless steel and PVC to lettuce was increased by 10 times in the presence of water on the lettuce surface. As a result of this study, the presence of B. cereus on produce contact surfaces can increase the risk of cross-contamination. Thus, it is important that the packing table and conveyer belt in post harvest facility should be properly washed and sanitized after working to prevent cross-contamination.

Removal of Heavy Metals using Aquatic Plant (수생식물을 이용한 중금속 제거에 관한 연구)

  • Lee, Sang-Ho;Lee, In-Koo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.4
    • /
    • pp.5-10
    • /
    • 2002
  • Pistia stratiotes(Water Lettuce) can be applied to remove inorganic pollutants from the wastewater for the advanced treatment. This study attempts to remove heavy metals from the secondary treated wastewater. Three different initial concentrations of heavy metals were applied as 0.5, 1.0 and 1.5 mg/L for Lead(Pb) and Chromium(Cr(VI)). In addition, the removal efficiency for the mixture of Lead and Chromium was also observed. The removal efficiency of Pb was in the range of 41.0~72.0% for Pb and it was in the range of 25.0~30.0% for Cr(VI) by Pistia stratiotes. The plants placed in static systems were able to remove the heavy metals in a few days of exposure. However, it was observed that the heavy metals affected produce phytotoxic effects on plants resulting in inhibition of chlorophyl synthesis, decrease in biomass production, and finally plant necrosis. The removal efficiencies of Pb and Cr(VI) by Pistia stratiotes were increased with plant growth.

  • PDF

A study on the characteristic of vegetables temperature in the pre-cooling vacuum unit (진공 예냉장치 내에서의 야채류의 온도 변화 특성에 관한 연구)

  • Won, Jong-Ho;Park, Sang-Gyun;Yoon, Seok-Hoon;Oh, Cheol
    • Journal of Navigation and Port Research
    • /
    • v.31 no.10
    • /
    • pp.879-884
    • /
    • 2007
  • This study is to observe the change of temperature and relative humidity for various vegetables in vacuum precooling system. The materials for experiments were the lettuce, chinese cabbage, pak choi and cabbage. The experimental apparatus was constructed of vacuum chamber, vapor/water separator, water tank, pumps ejecting and cooling water circulation, refrigerator unit, cooling coil for water cooling, Hygrometer and Data logger measuring of the temperature change. The experiments were operated in 20torr and recorded every 3 minutes. It was found that the cooling temperature and speed of vegetables are depending on the percentage of its water content. The more water contains, the faster cooling speed and the lower cooling temperature.

Change of quality characteristics in fresh-cut 'Romaine' lettuce by heat treatment (열처리에 따른 신선편이 '로메인' 상추의 품질 특성 변화)

  • Bae, Jeong Mi;Lee, Da Uhm;Jeong, Moon Cheol;Choi, Jeong Hee
    • Food Science and Preservation
    • /
    • v.23 no.1
    • /
    • pp.27-33
    • /
    • 2016
  • This study investigated the effect of heat treatments on the quality characteristics of fresh-cut 'Romaine' lettuce by treating in hot water (45, 50, and $55^{\circ}C$) for 2 minutes. Sensory properties, respiration rate, ethylene production, microbial growth, browning index, total phenolics (TP), vitamin C, and antioxidant properties (DPPH, ABTS, and FRAP assays) of samples were evaluated after 5 days at $5^{\circ}C$. All heat treatment conditions tested in this study did not affect the change in TP after storage. Treatment at $45^{\circ}C$ enhanced respiration rate and ethylene production wheres decreased vitamin C content and antioxidant activities. There was no significant difference in browning index at $45^{\circ}C$ treatment. The rapid tissue softening occurred when treated with $55^{\circ}C$ hot water for 2 minutes. The $50^{\circ}C$ heat treatments exhibited the best quality index including texture and color, and inhibited microbial growth and browning after storage. In addition, the $50^{\circ}C$ heat treatment showed the highest vitamin C content and antioxidant activities (DPPH, ABTS, FRAP assay) after storage. Therefore, the $50^{\circ}C$ heat treatment can be used to maintain quality and antioxidant property of fresh-cut 'Romain' lettuce.

Irrigation with Microbial-Contaminated Water and Risk of Crop Contamination (미생물 오염 용수 관개에 의한 작물의 오염 위험성)

  • Choi, C. Yeon-Sik;Song, In-Hong;Kwun, Soon-Kuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.2
    • /
    • pp.87-97
    • /
    • 2007
  • The aim of this study was to compare crop contamination between two irrigation methods using microbial-contaminated water. The effect of relative humidity on microbial survival of the three indicator microorganisms was also investigated. Escherichia coli ATCC 25922, Clostridium perfringens ATCC 3624, and coliphage PRD1 were applied to irrigation water to grow cantaloupe, lettuce, and bell pepper. Half of the sixteen plots were subsurface drip irrigated (SDI) and the other half were furrow irrigated (FI). Two relative humidity levels were controlled at 15-65 % and 55-80 % for the dry and humid condition experiments, respectively. Samples of produce, surface soil, and subsurface soil at a depth of 10 cm were collected over a two-week period following the application of the study microorganisms. Overall, greater contamination of both produce and soil occurred in the FI plots. For the SDI plots, preferential water paths and resulting water appearance on the seed beds seemed to be responsible for produce contamination. Relative humidity levels did not appear to affect microbial survival in soil. PRD 1 showed lower inactivation rates than 5. coli in both dry and humid conditions. C. perfringens did not experience significant inactivation over the experimental period, suggesting this microorganism can be an effective indicator of fecal contamination.

Analysis of Water Stress of Greenhouse Crops Using Infrared Thermography (열영상 정보를 이용한 온실 재배 작물의 수분 스트레스 분석)

  • 김기영;류관희;채희연
    • Journal of Biosystems Engineering
    • /
    • v.24 no.5
    • /
    • pp.439-444
    • /
    • 1999
  • Automated greenhouse production systems often require crop growth monitoring involving accurate quantification of plant physiological properties. Conventional methods are usually burdensome, inaccurate, and harmful to crops. A thermal image analysis system can accomplish rapid and accurate measurements of physiological-property changes of stressed crops. In this research a thermal imaging system was used to measure the leaf-temperature changes of several crops according to water deficit. Thermal images were obtained from lettuce, cucumber, pepper, and chinese cabbage plants. Results showed that there were significant differences in the temperature of stressed plants and non-stressed plants. The temperature differences between these two group of plants were 0.7 to 3$^{\circ}C$ according to species.

  • PDF

Spectral Response of Red Lettuce with Zinc Uptake: Pot Experiment in Heavy Metal Contaminated Soil (아연섭취에 따른 적상추의 분광학적 반응: 중금속 오염토양에서의 반응실험)

  • Shin, Ji Hye;Yu, Jaehyung;Kim, Jieun;Koh, Sang-Mo;Lee, Bum Han
    • Economic and Environmental Geology
    • /
    • v.52 no.2
    • /
    • pp.129-139
    • /
    • 2019
  • This study investigates the spectral response of red lettuce (Lactuca sativa var crispa L.) to Zn concentration. The control group and the experimental groups treated with 1 mM(ZnT1), 5 mM(ZnT2), 10 mM(ZnT3), 50 mM(ZnT4), and 100 mM(ZnT5) were prepared for a pot experiment. Then, Zn concentration and spectral reflectance were measured for the different levels of Zn concentration in red lettuce. The Zn concentration of the control group had the range of 134-181 mg/kg, which was within the normal range of Zn concentration in uncontaminated crops. However, Zn concentration in the experimental group gradually increased with an increase in concentration of Zn injection. The spectral reflectance of red lettuce showed high peak in the red band due to anthocyanin, high reflectance in the infrared band due to the scattering effect of the cell structure, and absorption features associated with water. As Zn concentration in red lettuce leaves increased, the reflectance increased in the green and red bands and the reflectance decreased in the infrared band. The correlation analysis between Zn concentration and spectral reflectance showed that the reflectance of 700-1300 nm had a significant negative correlation with Zn concentration. The spectral band is a wavelength region closely related to the cell structure in the leaf, indicating possible cell destruction of leaf structure due to increased Zn concentration. In particular, 700-800 nm reflectance of the infrared band showed the strongest correlation with the Zn concentration. This study could be used to investigate the heavy metal contamination in soil around mining and agriculture area by spectroscopically recognizing heavy metal pollution of plant.

Removal Effects of Organic-Phosphorus Pesticide Residue in lettuce by washing methods (세척방법에 따른 상추중 유기인 잔류농약의 제거효과)

  • Ko, Bok-Sil;Jeon, Tae-Hwan;Jung, Kyu-Saeng;Lee, Sung-Kook
    • Journal of agricultural medicine and community health
    • /
    • v.21 no.2
    • /
    • pp.159-171
    • /
    • 1996
  • It is investigated to determine the removal efficiency of organic - phosphorus insecticide residues in lettuce by washing processes, the 5 washing solution (stagnant tap water, flowing tap water, alkaline solution, acidic solution) were used with the washing time(10, 30, 50sec) and frequencies(1, 2, 3 washing, 2 rinsing). The removal efficiency of residual pesticides by 5 washing methods was increased on the more washing time and frequency, and also was the highest on the 3 times washing for each 50 sec. The removal rate with stagnant tap water was 33.7% of Diazinon, 45.7% of Dimethoate and 24.6% of Fenitrothion, but 29.4% of Diazinon, 37.7% of Dimethoate and 24.5% of Fenitrothion with flowing tap water. Therefore, the former was significantly higher effective than the latter one. The removal rate of residual pesticides with alkaline solution showed 32.1% of Diazinon, 49.5% of Dimethoate and 29.9% of Fenitrothion, and 30.4% of Diazinon, 36.4% of Dimethoate and 21.0% of Fenitrothion with acidic solution. The washing efficiency of neutral detergent showed the most effective result than others with 47.1% of Diazinon, 58.0% of Dimethoate and 39.5% of Fenitrothion. Consequently, it's appeared that the neural detergent washing was the most effective method on the 3 times washing for each 50 sec.

  • PDF

Disinfection efficacy of slightly acidic electrolyzed water (SlAEW) against some fresh vegetables (미산성 차아염소산수의 신선 채소류에 대한 살균 유효성)

  • Park, Kee-Jai;Lim, Jeong-Ho;Jung, Heeyong;Jeong, Mooncheol
    • Food Science and Preservation
    • /
    • v.24 no.2
    • /
    • pp.312-319
    • /
    • 2017
  • In the present study, disinfection efficacy of slightly acidic electrolyzed water [SlAEW, 30 ppm of effective chlorine at $20{\pm}1^{\circ}C$, oxidation-reduction potential (ORP) $562{\pm}23mV$, pH 6.4] on 4 kinds of vegetables (lettuce leaf, endive leaf, perilla leaf and kale leaf) was evaluated to obtain a microbial reduction characteristics which are necessary to design a process control for non-thermal sterilization of fresh vegetables. Active chlorine, residual chlorine, microbial counts and residual microbial counts, which are the key factors in the non-thermal sterilization process were measured by dipping them in SlAEW three times for 30 minutes in order to analyze the relationship between factors. Total microbial count was decreased mostly during the first 10 minutes of washing, and the limit value that can be reduced by immersion treatment was 3 log CFU/g for the total microbial count surviving in 4 kinds of vegetables. The total number of microorganism that can be reduced by washing in SIAEW for 10 min was found to be about 2 log CFU/g on average. In addition, the active chlorine decreased in the initial 10 minutes in 2.2 ppm, 2.0 ppm, 1.7 ppm and 2.5 ppm in lettuce, perilla leaf, endive leaf and kale leaf, respectively, and about 50-80% of the chlorine was reduced in the initial 10 min appear.

Absorption of sulfur dioxide gas with various crops and it's relation to leaf injury (아황산가스에 의(依)한 작물별파해엽율(作物別破害葉率) 및 가스흡수량조사(吸收量調査))

  • Kim, B.Y.;Han, K.H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.13 no.1
    • /
    • pp.39-44
    • /
    • 1980
  • To study the effects of sulfur dioxide on the plant; Barly, wheat, soybean sweet potato, cucumber, egg plant, red pepper, tomato, lettuce, water melon, castor bean, grape and lily were exposed to the different levels of sulfur dioxide gas(0.1, 0.25, 0.50, $1.0mg/{\ell}/hr$) The symptoms of damage, ratios of destroyed leaf, sulfur content and absorption amounts of the gas by leaves were investigated 1. According to the increasing concentration of the gas ratios of destroyed leaf were increased in all plants. The ratios of destroyed leaf were shown by egg plant at $0.1mg/{\ell}/hr$ of $SO_2$ were 30 percent, and no visible injuries were shown by the wheat potato, castor bean, water melon, lily at $0.25mg/{\ell}/hr$. 2. Gray and red brown spots between the vein nerve shown by barly and wheat leaf; leaf burn by soybean, potato, sweat potato, castor bean, egg plant, red pepper, tomato and grape; leaf withering from the leaf tips by the lettuce, water melon, lily. 3. The volums of the gas absorption by cucumber, egg plant, red peper, castor he an were more than $10{\ell}/hr$, however less than $2{\ell}/hr$, be lettuce, water melon, grape, barly and wheat. 4. According to the increasing concentration of sulfur dioxide gas, sulfur contents in leaf were increased in all plants, however volums of absorption gas were decreaed. 5. According to the increase of sulfur content in leaf, ratios of destroyed leaf were increased. 6. Positive correlation was shown between total and water soluble sulfur content in leaf.

  • PDF