• Title/Summary/Keyword: Water infrastructure

Search Result 966, Processing Time 0.042 seconds

Development of Eco-Efficient Water Infrastructure Strategy in the Asia Pacific Region

  • Park, Ji-Seon;Jung, Hye-Yoon;Kang, Boo-Sik;Lee, Joo-Heon;Lee, Seung-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.115-120
    • /
    • 2010
  • This study suggests 'Eco-Efficient Water Infrastructure' as a breakthrough to the economically and ecologically challenged region; the Asia-Pacific. The study conceptualizes eco-efficient water infrastructure based on the understanding of eco-efficiency and variety of indicators for eco-efficient water infrastructure. Further, the guidelines for establishing national strategies for eco-efficient water infrastructure is introduced.

  • PDF

Concept and Indicators of Eco-Efficient Water Infrastructure for Asia and the Pacific

  • Lee, Seung-Ho;Kang, Boo-Sik;Hong, Il-Pyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.2169-2175
    • /
    • 2009
  • This research aims to evaluate the concept of eco-efficient water infrastructure and provides a list of case studies in order to help understand the applicability of eco-efficient water infrastructure to Asia and the Pacific. A set of indicators have been explored to assess eco-efficiency in water infrastructure for the region on a micro and macro scale. The core idea of eco-efficiency, 'more value with less impact (on the environment)', has proven to be applicable in management of water infrastructure. The fundamental elements in eco-efficient water infrastructure should encompass physical infrastructure and non-physical infrastructure, which is more needed particularly in Asian countries. The case studies have demonstrated the applicability of the concept of eco-efficient water infrastructure. The Republic of Korea has provided the case of the eco-friendly approaches to enhance dam management and its innovative solutions how to use water more efficiently through state-of-art technologies. The experiences of Singapore are some of the best evidence to establish eco-efficient water infrastructure, for instance, the NEWater project via application of cutting edge technologies (recycled water) and institutional reform in water tariff systems to conserve water as well as enhance water quality. A list of indicators to assess eco-efficiency in water infrastructure have been discussed, and the research presents a myriad of project cases which are good to represent eco-efficiency in water infrastructure, including multipurpose small dams, customized flood defense systems, eco-efficient ground water use, and eco-efficient desalination plants. The study has presented numerous indicators in five different categories: 1) the status of water availability and infrastructure; 2) production and consumption patterns of freshwater; 3) agricultural products and sources of environmental loads; 4) damages from water-caused natural disaster; and 5) urban water supply and sanitation. There are challenges as well as benefits in such indicators, since the indicators should be applied very carefully in accordance with specific socio-economic, political and policy contexts in different countries in Asia and the Pacific Region. The key to success of establishment of eco-efficient water infrastructure in Asia primarily depends on the extent to which each country is committed to balancing its development of physical as well as non-physical water infrastructure. Particularly, it is imperative for Asian countries to transform its policy focus from physical infrastructure to non-physical infrastructure. Such shift will help lead to implementation of sustainable in Asian countries.

  • PDF

Technical Advancements Needed for the Introduction of Distributed Water Infrastructure to Urban Wastewater Management Systems (분산형 물 인프라의 도시 하수관리 시스템 도입을 위한 기술적 발전방안)

  • Yongju Choi;Wooram Lee
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.1
    • /
    • pp.76-86
    • /
    • 2023
  • We are on the verge of paradigm shift for the design and operation of our urban water systems from treatment- and efficiency-based to recirculation- and sustainability-based. One of the most frequently suggested alternatives to embody this paradigm shift is to decentralize the currently highly centralized urban water infrastructure. However, claims for water infrastructure decentralization are often criticized due to poor economic feasibility, unstable performance, and unprofessional operation and maintenance. The current study critically reviews the literature to discuss the technical advancement needs to overcome such challenges. Firstly, decentralized water infrastructure was briefly defined and the rationale for the proposal of its introduction to the next-generation urban water systems was laid down. The main discussion focused on the following water technologies, which require special attention when working with decentralized water infrastructure: i) material collection, storage, and transport; ii) easily scalable water treatment; iii) sensor, information, and communications; and iv) system optimization. The principles, current development status, and challenges were discussed for each of the water technologies. The discussion on the water technologies has enabled the identification of future research needs for their application to the next-generation urban water systems which will be designed following decentralized water infrastructure. This paper will significantly improve the current understanding on water infrastructure decentralization and provides insight on future direction of water technology development.

Evaluation of the Level of Water Welfare in 24 Local Governments in Deagu·Gyeongsangbukdo using Statistical Yearbook (통계연보를 활용한 대구·경북지역 24개 지자체의 물복지 수준 평가)

  • Lee, Do Kyeong;Ahn, Seung Seop;Park, Ki bum
    • Journal of Environmental Science International
    • /
    • v.30 no.11
    • /
    • pp.937-944
    • /
    • 2021
  • In this study, water resource topics, infrastructure, water supply, users, and economic indicators based on statistical annual standards for evaluating water welfare were selected by examining domestic and foreign water resource-related indicators. The level of water welfare was evaluated relative to 23 cities and counties in Daegu and Gyeongsangbuk-do using data from the Statistical yearbook, and places with high value of indicators urbanization and large populations were excellent in the infrastructure field, but overall analysis showed that small and medium-sized cities had higher levels. It is judged that it is necessary to develop continuous research and indicators that can evaluate and quantify the level of physical welfare that the people can feel by utilizing the results of this study. In future studies, it is necessary to systematically evaluate the level of water welfare by local governments in Korea through more diverse evaluation items and detailed indicators for each item so that it can be used as basic data for realizing water welfare.

Cooperation plan between South-North Korea in the water environment sector (물환경분야 남북한 협력방안)

  • Kim, Geonha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • With growing expectations for economic cooperation between the two Koreas, there is much interest in participating in the construction of infrastructure in North Korea. In particular, water and sewage infrastructure is the four major social infrastructures in addition to housing, transportation, electricity and telecommunications. North Korea is known to have severe water pollution and ecosystem destruction in major rivers, water pollution and soil pollution in mining areas are serious, and water and sewage infrastructures in cities other than Pyongyang are known to be weak. Preemptive investment in water supply and drainage in North Korea is the foundation for securing the quality of life of the North Korean and is the foundation of public health and industry. It is a leading investment to reduce the cost of unification and is a new growth engine for the water reloded industry. In this study, we proposed a plan to exchange and cooperate in water environment for building water infrastructure of North Korea by examining the data related to water quality, water resources, water disaster, related legal system and human resources exchange situations in North Korea.

Antimony Content of Natural Mineral Water in Korean Market and Migration into Water from Bottle Material (국내유통 먹는샘물 중의 안티몬 함량 및 용기 이행 특성)

  • Huh, Yujeong;Yang, Mihee;Cho, Yangseok;Ahn, Kyunghee;Lee, Younhee;Chung, Hyunmee;Kwon, Ohsang;Park, Juhyun
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.2
    • /
    • pp.199-205
    • /
    • 2014
  • The knowledge on the migration of antimony (Sb) from PET bottles into the water is of greate concern. Antimony in all bottled water marketed in korea and in raw water was analyzed. The detection rate of antimony in total bottled water was 88 % and 100% in PET (Polyethylene terephthalate, PET), 55% in PC (Polycarbonate, PC) bottled water. 55% of raw water contained antimony. The average concentration of Sb in PET bottled water was $0.39{\mu}g/L$, higher than PC bottles ($0.20{\mu}g/L$) and the raw water ($0.22{\mu}g/L$). The migration of Sb into water that is stored in different conditions (room temperature, $45^{\circ}C$, and direct sunlight exposure) was investigated for 180 days. The migration tendency increased with the storage time and temperature. PET bottles showed a sharp increase of Sb concentration at $45^{\circ}C$, but there was no differences between the room temperature and sunlight exposure. The Sb migration in all simulated solution(deionized water, 4% acetic acid, and 20% ethanol) also increased with storage time and temperature. The Sb migration values ranged from 0.35 to $0.49{\mu}g/L$ in all simulated solution, which was far below the permissible korean migration level of $40{\mu}g/L$. There was a tendency that the number of re-use of a bottle and the amount of leaching were in inverse proportion.

Study on the Characteristics of Gray Water from an Apartment Complex for Reuse (재이용을 위한 공동주택 Gray Water의 특성 연구)

  • Park, Su Jeong;Kwon, Oh Sang;Tanaka, Hiroaki;Kim, Chang Soo;Kim, Eun Seok;Kim, Ji Hye;Jang, Seok Jea;Ahn, Kyung Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.6
    • /
    • pp.847-851
    • /
    • 2013
  • This study describes the results of an investigation conducted in order to characterize the quantity and quality of individual gray water streams. The highest pollutants concentrations were found in gray water originating from kitchen and laundry with $BOD_5$ concentrations in the order of several hundreds $mgl^{-1}$. In contrast to this, bathroom was regarded as a major contributor of Escherichia coli. Laundry gray water has higher pH, sodium, sulfate, anionic surfactants. Individual gray water types had different contribution to the overall daily discharge and relative pollutants loads. Kitchen, although accounting for only 13% of the total volume, was identified as a major source of microorganisms with Total coliforms, Escherichia coli, Fecal streptococcus taking up 82%, 74% and 54% of their relative daily load, respectively. The laundry gray water, although being responsible for 36% of the total daily discharge, was established as a significant contributor of sodium, sulfate, anionic surfactants and TOC (70%, 72%, 84% and 52%, respectively). But the laundry gray water was a minor source of microorganisms. Bathroom was found to be a major gray water producer, making up 51% of the flow, but constituted less than 50% of the relative daily load in most cases.

Characteristics of NPS Pollution from a Coal Mining (가행광산 지역의 비점오염물질 유출특성)

  • Seo, Jiyeon;Shin, Minhwan;Won, Chul-hee;Choi, Yong-hun;Jung, Myung-suk;Lim, Kyoung Jae;Choi, Joongdae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.474-481
    • /
    • 2010
  • This study was conducted to describe the characteristics of Non-point source (NPS) Pollution discharge from a coal mining area in Korea. The study areas is located on the Dogye site, Samchuk, Kangwon Province Coal Corporation and the Jangsung site, Taebaek, Kangwon Province Coal Corporation. The monitoring system was installed at a drainage channel and water samples and rainfall events were collected during March 2008 to February 2009. The collected water samples were analyzed with respect to SS, BOD, $COD_{Cr}$, $COD_{Mn}$, T-N, T-P, and TOC, respectively. It was observed that the runoff and water quality were largely influenced by mine drainage. Also a significant relationship was observed from the correlation between flow and water quality, flow and NPS. And estimated Event Mean Concentration (EMC), NPS pollution loads were Dogey coal mine and Taeback coal mine respectively. As the study progresses in the future, runoff and pollution loads will be updated.