• Title/Summary/Keyword: Water film

Search Result 1,931, Processing Time 0.035 seconds

Preparation of Cellulose-Based Edible Film and its Physical Characteristics (Cellulose를 이용한 가식성(可食性) Film의 제조와 물리적 특성연구)

  • Song, Tae-Hee;Kim, Chul-Jai
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.1-7
    • /
    • 1996
  • Three formulations were used to prepare the cellulose-based edible films consisting of hydrocolloid and lipids; film A made by coating method, films B and C by emulsion method, which were formed in a thin layer glass plate and then dried. Films A, B and C were all approximately 0.03 mm thick with 1-3% moisture, 59-68% lipid, and almost whitish color. Film A was better in tensile strength, and lipids affected water vapor permeability on three films, in which films A and B did not differ significantly. Water vapor permeability of film A did not change but those of films B and C decreased significantly after storage for 8 weeks at $-15^{\circ}C$. Oxygen transmission rate and oxygen permeability of films A and C did not differ and changed significantly after 8-week storage at $-15^{\circ}C$. Under scanning electron microscope (SEM) observation on the structural characteristics of each film, film A indicated relatively uniform and smooth surface coatings of beeswax, while films B and C had individual lipid crystals and could be discerned. As a result, film A was better than films B and C in respect of physical properties, but the selection of useful film depended upon which physical property was more functional. Moreover, it was desirable in some cases for using films B and C because of their easiness of preparation and cold storage durability. It will be further needed to investigate how to formulate films B and C to have more unique surface characteristics, and to reduce water vapor and oxygen transmission rates.

  • PDF

Evaporation of Water in an Aqueous Lithium Bromide Solution flowing over a Horizontal Tube

  • Kim, Dong-Kwan;Kim, Moo-Hwan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.3
    • /
    • pp.57-62
    • /
    • 2001
  • Falling film heat transfer analyses with aqueous lithium bromide solution were performed to investigate the transfer characteristics of the copper tubes. Finned (knurled) tube and a smooth tube were selected as test specimens. Averaged generation fluxes of water and the heat flux were obtained. As the film flow rate of the solution increased, the generation fluxes of water decreased for both tubes due to the fact that the heat transfer resistance increased with the film thickness. The effect of the enlarged surface area at the knurled tube was supposed to be dominant at a small flow rate. The generation fluxes of water increased with the increasing degree of tube wall superheat. Nucleate boiling is supposed to occur at a wall superheat of 20K for a smooth tube, and at 10K for a knurled tube. The increased performance of the knurled tube was supposed to mainly come from the effect of the increased heating surface area.

  • PDF

Water film covering characteristic on horizontal fuel rod under impinging cooling condition

  • Penghui Zhang;Bowei Wang;Ronghua Chen;G.H. Su;Wenxi Tian;Suizheng Qiu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4329-4337
    • /
    • 2022
  • Jet impinging device is designed for decay heat removal on horizontal fuel rods in a low temperature heating reactor. An experimental system with a fuel rod simulator is established and experiments are performed to evaluate water film covering capacity, within 0.0287-0.0444 kg/ms mass flow rate, 0-164.1 kW/m2 heating flux and 13.8-91.4℃ feeding water temperature. An effective method to obtain the film coverage rate by infrared equipment is proposed. Water film flowing patterns are recoded and the film coverage rates at different circumference angles are measured. It is found the film coverage rate decreases with heating flux during single-phase convection, while increases after onset of nucleate boiling. Besides, film coverage rate is found affected by Marangoni effect and film accelerating effect, and surface wetting is significantly facilitated by bubble behavior. Based on the observed phenomenon and physical mechanism, dry-out depth and initial dry-out rate are proposed to evaluate film covering potential on a heating surface. A model to predict film coverage rate is proposed based on the data. The findings would have reliable guide and important implications for further evaluation and design of decay heat removal system of new reactors, and could be helpful for passive containment cooling research.

The Cooling Performance of Thrust Chamber with Film Cooling (막냉각에 따른 추력실의 냉각 성능)

  • Kim, Sun-Jin;Jeong, Hae-Seung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.1 s.24
    • /
    • pp.117-124
    • /
    • 2006
  • Experiments on film cooling were performed with a small scale rocket engine homing liquid oxygen (LOx) and Jet A-1(jet engine fuel). Film coolants(Jet A-1 and water) were injected through the film cooling injector. Film cooled length and the outside wall temperature of the combustor were determined for chamber pressure, and the different geometries(injection angle) with the flow rates of film coolant. The loss of characteristic velocity due to film cooling was determined for the case of film cooling with water and Jet A-1. As the coolant flow increases, the outside wall temperatures decrease but the decrease in the outside wall temperatures reduced over the 8 percent film coolant flow rate. The efficiency of characteristic velocity was decreased with the Increase of the film coolant flow rate.

Comparison of particle collection characteristics in a wire-cylindrical wet electrostatic precipitator with and without a water film (와이어-실린더형 습식 전기집진기의 수막 유무에 따른 집진 특성 비교)

  • Woo, Chang Gyu;Cho, Won Ki;Kim, Hak-Joon;Kim, Yong-Jin;Han, Bangwoo
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.89-95
    • /
    • 2018
  • People's environmental concerns for fine particles in Korea lead to the strong necessity of improving the performance of environmental control systems. Wet electrostatic precipitators (ESPs) are considered as one of the alternatives to overcome the limit of previous dry ESPs, the re-entrainment of collected particles during rapping and back corona problem for high electrical resistivity dusts etc. In this study, a wire-cylindrical ESP with a thin water film has been developed. Particle collection characteristics were compared in the ESP with operations of water film on and off. Particle collection efficiencies at various applied voltages as well as voltage-current curves were almost the same in the ESP with and without a water film. Particle collection performance for PM1.0, PM2.5 and PM10 in the wet ESP with a water film was constantly maintained with operation time even in the high dust loading environment. This results indicate that a uniform water film in our wet ESP was successfully formed with a very thin layer without any dry spot and therefore could continuously clean the collected particles on the inner wall of the ESP without any performance degradation.

A Study on Cooling of Hot Steel Surface by Water-Air Mixed Spray(I) -The Effect of Air Mass Flux on Film Boiling Heat Transfer- (물-공기 혼합분무에 의한 고온 강판 냉각에 대한 연구 (I) -막비등 열전달에 대한 공기질량유속의 영향-)

  • Lee, Pil-Jong;Jin, Sung-Tae;Lee, Sung-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.247-255
    • /
    • 2004
  • The cooling characteristic of water-air mixed spray for high water mass flux is not well defined, compared to that of highly pressurized spray. A series of research program was planned to develop the boiling correlation for whole temperature range in case of water-air mixed spray with high water mass flux. The cooling experiments of hot steel surface with initial temperature of 820$^{\circ}C$ were conducted in unsteady state with relatively high water mass flux. A computer program was developed to calculate the heat flux inversely from measured data by three inserted thermocouples. Finally the effects of water and air mass flux on the averaged film boiling heat flux and wetting temperature were studied. In this 1st report, it is found that the boiling curve was similar to that of highly pressurized spray and the decreased slope of heat flux in film boiling region with respect to surface temperature became steep by increasing air mass flux. Also it is shown that, by increasing air mass flux, the averaged heat flux in film boiling region was increased, and then saturated and the wetting temperature was increased, and then decreased. Finally when the heat flux in film boiling region is compared with that of highly pressurized spray, it is known that the cooling is improved by introducing air up to 60%.

Recent Trend of Ultra-Pure Water Producing Equipment

  • Motomura, Yoshito
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.06a
    • /
    • pp.121-147
    • /
    • 1996
  • Since 1980, the water quality of ultra-pure water has been rapidly improved, and presently ultra-pore water producing equipment for 64Mbit is in operation. Table 1 shows the degree of integration of DRM and required water quality exlmple. The requirements of the ultra-pure water for 64Mbit are resistivity: 18.2 MQ/cm or higher, number of particulates: 1 pc/ml or less (0.05 $\mu$m or larger). bacteria count: 0.1 pc/l or less. TOC (Total Organic Carbon, index of organic snbstance) : 1ppb or less, dissolved oxygen: 5ppb or less, silica: 0.5ppb or less, heavy metal ions: 5ppb or less. The effect of metals on the silicon wafer has been well known, and recently it has been reported that the existence of organic substance in ultra-pure water is closely related to the device defect, drawing attention. It is reported that if organic substance sticks to the natural oxidation film, the oxide film remaims on the organic substance attachment in the hydrofluoric acid treatment (removal of natural oxidation film). The organic substance forms film on the silicon wafer, and harmful elements such as metals and N.P.S., components contained in the organic substance and the bad effect due to the generatinn of silicon carbide cannot be forgotten. In order to remove various impurities in raw water, many technological develoments (membrane, ion exchange, TOC removal, piping material, microanalysis, etc.) have been made with ultra-pure water producing equipment and put to practical use. In this paper, technologies put to practical use in recent ultra-pure vater producing equimeut are introduced.

  • PDF

Enhancement of thin film evaporation on low-fin tubes (낮은핀관의 액막 증발 촉진에 관한 연구)

  • 김내현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.674-682
    • /
    • 1998
  • In this study, thin film evaporation of water on low-fin tubes were experimentally investigated. Five low-fin tubes with different fin spacing and fin height were tested. Test range covered 0.146kg/ms $\leq$$\Gamma$$\leq$0.219kg/ms and 10㎾/$\m^2$$\leq$q $\leq$70㎾/$\m^2$. Saturation temperature was loot. Compared with the plain tube, low fin tubes enhanced the water film evaporation from 60% to 100%. Tubes with fin spacing smaller than 2mm and fin height higher than 1mm performed better than tubes with other fin configuration. However, when fin spacing was too small at high film flow or fin height was too high at low film flow, the performance decreased. The heat transfer coefficient slightly increased as the flow rate increased. Correlations are developed based on present data.

  • PDF

Mass transfer in adiabatic rectifier of ammonia-water absorption system (암모니아-물 흡수식 시스템에서 단열정류기의 물질 전달)

  • 김병주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.3
    • /
    • pp.414-421
    • /
    • 1999
  • Falling film rectification involves simultaneous heat and mass transfer between vapor and liquid interface. In the present work, the adiabatic rectification process of ammonia-water vapor on the vertical plate was investigated. The continuity, momentum, energy and diffusion equations for the solution film and vapor mixture were formulated in integral forms and solved numerically. The model could predict the film thickness, the pressure gradient, and the mass transfer rate. The effects of Reynolds number and ammonia concentration of solution and vapor mixture, rectifier length, and the enhancement of mass transfer in each phases were investigated. The stripping of water in vapor mixture occurred new the entrance of ammonia solution, which imposed the proper size of an adiabatic rectifier. Rectifier efficiency increased as film Reynolds number increased and as vapor mixture Reynolds number decreased. The improvement of rectifier efficiency was significant with the enhancement of mass transfer in falling film.

  • PDF

Water-spliting on ultrathin MgO(100) film on Ag(100)

  • Jo, Seong-Beom;Jo, Jun-Hyeong;Jeong, Yong-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.317-317
    • /
    • 2011
  • Water dissociation on oxide surface has been researched in many fields because of its importance as fundamental phenomenas. MgO(001) is a good model system to understand heterogeneous catalysis, gas sensors, ground-water contaminants, and atmosphere chemistry. Over decades, ultrathin film of MgO on Ag(100) have attracted research activities thanks to its enhanced catalytic property. Correlation of the oxide and the metal, potential screening, charge fluctuation from interface reconstruction makes different energetics of hydroxylation of waters on film. We calculate the water-spliting energetics under the vacuum system.

  • PDF