• Title/Summary/Keyword: Water exchange ratio

Search Result 187, Processing Time 0.18 seconds

Preparation and Properties of PE Heterogeneous ion Exchange Membrane with Bead and Fibrous ion Exchanger (비드와 섬유이온교환체 고정 PE 불균질 이온교환막의 제조 및 특성)

  • 황택성;박명규;강경석
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.575-581
    • /
    • 2002
  • Heterogeneous ion exchange membranes were prepared by mixing polyethylene as matrix with bead and fibrous anionic ion exchangers at different mixing ratio. Generally, ion exchange capacities were increased with increasing the ratio of the fibrous ion exchanger content. The highest ion exchange capacity of the membrane was 1.86 meq/g at 30wt% IXF (ion exchange fiber) in the membrane. The water uptake, fixed ion concentration, and ion transport number of the membrane increased with increasing the content of the fibrous ion exchanger. However, the electrical resistivity of the membrane was decreased with increasing the content of the fibrous ion exchanger. The lowest electrical resistivity of 5$\Omega$/$\textrm{cm}^2$ was observed at 30 wt%of IXF.

Decomposition of PVC and Ion Exchange Resin in Supercritical Water

  • Kim Jung-Sung;Lee Sang-Hwan;Park Yoon-Yul;Yasuyo Hoshikawa;Hiroshi Tomiyasu
    • Journal of Environmental Science International
    • /
    • v.14 no.10
    • /
    • pp.919-928
    • /
    • 2005
  • This study introduces the development of new supercritical water oxidation(SCW)(multiple step oxidation) to destruct recalcitrant organic substances totally and safely by using sodium nitrate as an oxidant. This method has solved the problems of conventional SCW, such as precipitation of salt due to lowered permittivity, pressure increase following rapid rise of reaction temperature, and corrosion of reactor due to the generation of strong acid. Destruction condition and rate in the supercritical water were examined using Polyvinyl Chloride(PVC) and ion exchange resins as organic substances. The experiment was carried out at $450^{\circ}C$ for 30min, which is relatively lower than the temperature for supercritical water oxidation $(600-650^{\circ}C)$. The decomposition rates of various incombustible organic substances were very high [PVC$(87.5\%)$, Anion exchange resin$(98.6\%)$, Cationexchange resin$(98.0\%)$]. It was observed that hetero atoms existed in organic compounds and chlorine was neutralized by sodium (salt formation). However, relatively large amount of sodium nitrate (4 equivalent) was required to raise the decomposition ratio. For complete oxidation of PCB was intended, the amount of oxidizer was an important parameter.

Effect of the Mixture Ratio of Ni-Pt Nanocatalysts on Water Electrolysis Characteristics in AEM System (Ni-Pt 나노 촉매의 혼합비가 음이온 교환막 수전해 특성에 미치는 영향)

  • LU, LIXIN;DAI, GUANXIA;LEE, JAEYOUNG;LEE, HONGKI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.5
    • /
    • pp.285-292
    • /
    • 2021
  • To study the effect of the mixture ratio of Ni-Pt nanocatalysts on water electrolysis characteristics in anion exchange membrane system, Ni-Pt nanocatalysts were loaded on carbon black by using a spontaneous reduction reaction of acetylacetonate compounds. The loading weight of Ni-Pt nanocatalysts on the carbon black was measured by thermogravimetric analyzer and the elemental ratio of Ni and Pt was estimated by energy dispersive x-ray analyzer. It was found that the loading weight of Ni-Pt nanoparticles was 5.36-5.95 wt%, and the loading weight increased with increasing Pt wt%. As the Ni-Pt loading weight increased, the specific surface area decreased, because Ni-Pt nanoparticles block the pores of carbon black. It was confirmed by BET analysis and dynamic vapor sorption analysis. I-V characteristics were estimated.

Recovery of Tin from Waste Tin Plating Solution by Ion Exchange Resin (주석도금폐액으로부터 이온교환수지를 이용한 주석 회수)

  • Shin, Gi-Wung;Kang, Yong-Ho;Ahn, Jae-Woo;Hyeon, Seung-Gyun
    • Resources Recycling
    • /
    • v.24 no.3
    • /
    • pp.51-58
    • /
    • 2015
  • In order to recover tin from the waste tin plating solution, we used the ion exchange method using three types of ion exchange resins. The ion exchange resin with tertiary functional group(Lewatit TP 272) has not adsorption ratio of tin. The ion exchange resin with iminodiacetic functional group(Lewatit TP 207) has high adsorption ratio of tin, but impurity content in the recovered tin solution was relatively high. Whereas, in case of the ion exchange resin with functional group of ethylhexyl-phosphate(Lewatit VP OC 1026), adsorption ratio of tin was less than that of Lewatit TP 207. However, it was possible to remove impurities in the recovered tin solution by controlling the pH of the solution. High purity tin solution can be recovered by removing the organic materials with water washing process.

Preparation and Characterization of Pt-Fe/Carbon Black Nanocatalyst for Anion Exchange Membrane in Alkaline Electrolysis (음이온 교환막 수전해용 Pt-Fe/카본블랙 나노 촉매 제조 및 특성)

  • SUNGKOOK CHO;JAEYOUNG LEE;HONGKI LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.715-722
    • /
    • 2022
  • Pt-Fe/carbon black nanocatalysts were prepared by spontaneous reduction reaction of Platinum(II) acetylacetonate and Iron(II) acetylacetonate in a nucleophilic solvent and they were characterized by scanning electron microscopy (SEM), energy dispersive X-ray analyzer (EDS), thermogravimetric analyzer (TGA), transmission electron microscopy (TEM), Brunauer, Emmett and Teller (BET) surface area analysis and anion exchange membrane (AEM) water electrolysis test station. The distribution of the Pt and Fe nanoparticles on carbon black was observed by TEM, and the loading weight of Pt-Fe nanocatalysts on the carbon black was measured by TGA. Elemental ratio of Fe:Pt was estimated by EDS and it was found that elemental ratio of Pt and Fe was changed in the range of 1:0 to 0:1, and the loading weight of Pt-Fe nanoparticles on the carbon black was 5.95-6.78 wt%. Specific surface area was greatly reduced because Pt-Fe nanocatalysts blocked the pores. I-V characteristics were estimated.

Bioelectricity Generation Using a Crosslinked Poly(vinyl alcohol) (PVA) and Chitosan (CS) Ion Exchange Membrane in Microbial Fuel Cell

  • Badillo-Cardoso Jonathan;Minsoo Kim;Jung Rae Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.303-310
    • /
    • 2023
  • Microbial fuel cells (MFCs) are a bioelectrochemical system where electrochemically active bacteria convert organic waste into electricity. Poly(vinyl alcohol) (PVA) and chitosan (CS) are polymers that have been studied as potential alternative ion exchange membranes to Nafion for many electrochemical systems. This study examined the optimal mixing ratio of PVA and chitosan CS in a PVA:CS composite membrane for MFC applications. PVA:CS composite membranes with 1:1, 2:1, and 3:1 ratios were synthesized and tested. The water uptake and ion exchange capacity, Fourier transform infrared spectra, and scanning electron microscopy images were analyzed to determine the physicochemical properties of PVA:CS membranes. The prepared membranes were applied to the ion exchange membrane of the MFC system, and their effects on the electrochemical performance were evaluated. These results showed that the composite membrane with a 3:1 (PVA:CS) ratio showed comparable performance to the commercialized Nafion membrane and produced more electricity than the other synthesized membranes. The PVA:CS membrane implemented MFCs produced a maximum power density of 0.026 mW cm-2 from organic waste with stable performance. Therefore, it can be applied to a cost-effective MFC system.

Industrial Waters of Taegu City and on the Objection of Iron for Water Softening (大邱市의 工業用水와 鐵의 軟化障害에 關하여)

  • Lee, Dae-Soo;Hong, Soon-Yung
    • Journal of the Korean Chemical Society
    • /
    • v.6 no.2
    • /
    • pp.117-121
    • /
    • 1962
  • The waters throughout Taegu area for 87 points were analysed and according to the analytical data, following unfavorable characteristics for industrial uses were given: (1)Shows strong hardness, (2)Has high ratio of ignition residue to evaporation residue, (3) pH value is over 7, (4) Contains considerable quntities of iron.And then investigated the exchange rate and regeneration level of iron ion using cation exchange resin, Lewatit KS.When the hard water containing 2.2 ppm of iron with 18.4 ppm of calcium and 6.2 ppm of magnesium was passed through the ion exchange resin under $3cc/cm^2/min$ in exhaustant flow rate, exchange rate of iron reached to 42% after 300 hours flow. The exchange efficiency shows abrupt decreasing in initial stage of flow up to 100 hours flow. The exchanger which contains iron was regenerated with 10% sodium hydroxide aqua solution under SV (space velocity) 4. By this method, 57% of iron was eliminated from exchanger while calcium and magnesium are removed as much as 85% and 87% respectively.

  • PDF

Preparation of Anion Exchange Membranes of Cross-linked Poly((vinylbenzyl)trimethylammonium chloride-2-hydroxyethyl methacrylate)/Poly(vinyl alcohol) (가교결합한 Poly((vinylbenzyl)trimethylammonium chloride-2-hydroxyethyl methacrylate)/poly(vinyl alcohol) 음이온 교환막 제조)

  • Kim, Mi-Yang;Kim, Kwang-Je;Kang, Ho
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.621-626
    • /
    • 2010
  • Anion exchange membranes can be used for reverse electrodialysis for electric energy generation, and capacitive deionization for water purification, as well as electrodialysis for desalination. In this study, anion exchange membranes of poly((vinylbenzyl) trimethylammonium chloride-2-hydroxyethyl methacrylate)/poly(vinyl alcohol) were prepared through the polymerization of (vinylbenzyl)trimethylammonium chloride and 2-hydroxyethyl methacrylate in aqueous poly(vinyl alcohol) solutions, esterification with glutaric acid, and cross-linking reaction with glutaraldehyde. We investigated electrochemical properties for the anion exchange membranes prepared according to experimental conditions. Ion exchange capacity and electrical resistance for the membranes were changed with a variation in the monomer ratio in polymerization. Water uptake and conductivity for the membranes decreased with an increase in the content of glutaric acid in esterification. The change in the time of crosslinking reaction with the formed film and glutaraldehyde affected electrochemical properties such as water uptake, conductivity, or transport number for the membranes. Chronopotentiometry and limiting current density for the anion exchange membranes prepared were measured.

Numerical Modeling of Solid Alkaline Fuel Cell (고체 알칼리 연료전지 모델링)

  • Kim, Kyoungyoun;Sohn, Young-Jun;Choi, Young-Woo;Park, Seok-Hee;Kim, Chang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.98.1-98.1
    • /
    • 2011
  • We present here an isothermal, one-dimensional, steady-state model for a solid alkaline fuel cell (SAFC) with an anion exchange membrane. The conducting ions now move from the cathode to the anode in SAFC. The water is produced at the anode and is also a stoichiometric reactant at the cathode as well as hydrogen and oxygen. In the present model, a net-water-per-proton flux ratio can be predicted and the water transport in the SAFC is explained for various operating conditions.

  • PDF

Synthesis and Functionalized Conditions of Quaternized Poly(vinylimidazole-co-trifluoroethylmethacrylate-co-divinylbenzene) Anion Exchange Membrane (질산성 질소 제거용 Quaternized Poly(vinylimidazole-co-trifluoroethylmethacrylate-co-divinylbenzene) 음이온교환막 제조와 관능화 조건)

  • Oh, Chang Min;Hwang, Taek Sung
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.157-164
    • /
    • 2015
  • In this study, we synthesized poly(vinylimidazole-co-trifluoroethylmethacrylate-co-divinylbenzene) (PVTD) copolymer and introduced functional group through quaternization reaction for removing nitrate from drinking water. Also, optimizing conditions (reaction time, reaction temperature and functionalized agents concentration) for introducing the functional group were confirmed. The basic properties such as water uptake, swelling ratio, electrical resistance, ion exchange capacity and anion permselectivity for removing nitrate from drinking water were measured. The optimal values of water uptake, electrical resistance and ion exchange capacity of synthesized anion exchange membrane were 51.2%, $5.4{\Omega}{\cdot}cm^2$, and 1.04 meq/g, respectively.