• Title/Summary/Keyword: Water depth estimation

Search Result 262, Processing Time 0.033 seconds

A Study on Estimation of Failure Probability of Allowable Stress Design using Reliability Analysis to the Bearing Capacity the Deep Water Depth Large-diameter Drilled Shaft (대수심 대구경 현장타설말뚝의 지지력에 대한 신뢰성 해석을 이용한 허용응력 설계의 파괴확률 평가 연구)

  • Han, Yushik;Lee, Yunkyu;Choi, Yongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.4
    • /
    • pp.43-51
    • /
    • 2014
  • A Large-diameter drilled shaft of deep water depth composite foundation supporting a high rise pylon of the test designed super long span bridge was designed by allowable stress design method and failure probability through reliability analysis to bearing capacity was estimated. The allowable stress design results for the bearing capacity of a drilled shaft were analyzed by reliability analysis and the probability of failure shows 0.12 % in case of CFEM, 0.0002 % in case of Korea Highway Corporation criterion, and 0.003 % in case of structure foundation design criterion. In the allowable stress design, the bearing capacity of a large-diameter drilled shaft was obtained by applying to safety factor 3 and reliability analysis for the results was done. If the failure probability suggested by AASHTO(2007) specification is set to 0.02 %, the socketed length of a drilled shaft shows an increase of 25 % in CFEM, decrease of 60 % in KHCC, and decrease of 89 % in SFDC.

Estimation of Optimal Ecological Flowrate of Fish in Chogang Stream (초강천에서 어류의 최적 생태유량 산정)

  • Hur, Jun Wook;Kim, Dae Hee;Kang, Hyeongsik
    • Ecology and Resilient Infrastructure
    • /
    • v.1 no.1
    • /
    • pp.39-48
    • /
    • 2014
  • In order to establish fundamental data for stream restoration and environmental flow, we investigated optimal ecological flowrate (OEF) and riverine health condition in the Chogang Stream, a tributary to Geum River, Korea. The number of fish individuals sampled in this period were 4,669 in 36 species of 9 families. The most abundant species was Korean chub (Zacco koreanus, 34.0%) followed by pale chub (Z. platypus, 22.6%) and Korean shinner (Coreoleuciscus splendidus, 13.3%). Index of biological integrity (IBI) and qualitative habitat evaluation index (QHEI) values decreased from upstream to downstream along the stream. The estimated IBI value ranged from 27.9 to 38.6 with average 32.2 out of 50, rendering the site ecologically fair to good health conditions. OEF was estimated by the physical habitat simulation system (PHABSIM) using the habitat suitability indexes (HSI) of three fish species Z. koreanus, C. splendidus and Pseudopungtungia nigra selected as indicator species. In Z. koreanus, HSI for flow velocity and water depth were estimated at 0.1 to 0.4 m/s and 0.2 to 0.4 m, respectively. In P. nigra, HSI for flow velocity, water depth and substrate size were estimated at 0.2 to 0.5 m/s and 0.4 to 0.6 m and fine gravel to cobbles, respectively. OEF values increasing from up to downstream was found to increase, weighted usable area (WUA) values increased accordingly.

Seismic Refraction Survey for Installation of Water Pipe on a Side of the Seomjin River near Namwon (남원 섬진강변 관로 매설을 위한 굴절파 탐사)

  • Kim, Gi Yeong;U, Nam Cheol;Kim, Hyeong Su
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.3
    • /
    • pp.209-216
    • /
    • 1999
  • In order to get geologic information necessary for underground installation of water pipe, seismic refraction profiling was applied to the southwest side of the Seomjin River which flows between Namwon-gun, Cholabuk-do and Gokseong-gun, Cholanam-do. Before obtaining the in-line refraction data, walkaway data were recorded with 1 m geophone interval and -36∼+36 m offset range. From the walkaway data, it is interpreted that a dry soil layer with the average velocity of 585 m/s covers wet sediments with the average velocity of 1,326 m/s. The second layer overlies basements nearly horizontally with the average velocity of 4,218 m/s. Refraction profiling of 220 m long with the geophone interval of 2 m is interpreted with the Generalized Reciprocal Method (GRM). Three layers are identified with average velocities of 688 m/s, 1,473 m/s, and 3,776 m/s, respectively. The depth to the bedrock impossible for ripping ranges between two extremes, 1.51∼2.43 m and 2.25∼3.54 m, depending upon thickness of the hidden layer. A typical shortcoming of refraction method, the hidden layer problem, prevents accurate estimation in depth of the second layer.

  • PDF

A CFD Study of Oil Spill Velocity from Hole in the Hull of Oil Tanker (유조선 선체 파공에 따른 원유 유출 유속의 CFD 연구)

  • Choi, Dooyoung;Lee, Jungseop;Paik, Joongcheol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.71-71
    • /
    • 2018
  • Sea pollution accidents have been occurred due to the increase of marine ship traffic. Oil spill from the hull hole induced by tanker collision results in the huge sea pollution. Proper and prompt reaction on such oil spill disaster is needed to minimize the damage. Thru-hull emergency wood plug is typically used to manually close small holes, while it is required to develop some mechanical devices for closing large holes in the hull due to huge fluid pressure. Accurate estimation of oil discharge and velocity from such holes are important to develop proper device to control hull hole damage. High resolution CFD modeling investigation on the configurations of hull hole of 7.5 m initial depth and 30 cm diameter, which was observed in the oil spill accident of the Hebei Sprit off the west coast of Korea in 2007, has been carried out to compute the oil spill velocity distribution in terms of flow depth. Friction loss due to the viscous flow and the discharge coefficient of crude oil with specific gravity SG = 0.85 and viscosity of $4-12cP(mPa{\cdot}s)$ at the temperature of $20^{\circ}C-100^{\circ}C$ are presented in terms of Reynolds number based on the results of high-resolution CFD modeling.

  • PDF

Estimation in a Model for Determining the Amount of Carbon in Soil and Measurement of the Influences of the Specific Factors (농경지 토양탄소량 결정모형 추정 및 요인별 영향력 계측)

  • Suh, Jeong-Min;Cho, Jae-Hwan;Son, Beung-Gu;Kang, Jum-Soon;Hong, Chang-Oh;Kim, Woon-Won;Park, Jeong-Ho;Lim, Woo-Taik;Jin, Kyung-Ho
    • Journal of Environmental Science International
    • /
    • v.23 no.11
    • /
    • pp.1827-1833
    • /
    • 2014
  • This study has been carried out to present the valuation system of soil carbon sequestration potentials of soil in accordance with the new climate change scenarios(RCP). For that, by analyzing variation of soil carbon of the each type of agricultural land use, it aims to develop technology to increase the amount of carbon emissions and sequestration. Among the factors which affects the estimation of determining the soil carbon model and influence power after the measurement on soil organic carbon, under the center of a causal relationship between the explanatory variables this study were investigated. Chemical fertilizers (NPK) decreased with increasing the amount of soil organic carbon and as with the first experimental results, when cultivating rice than pepper, the fact that soil organic carbon content increased has been found out. The higher the carbon dioxide concentration, the higher the amount of organic carbon in the soil and this result is reliable under a 10% significance level. On the other hand, soil organic carbon, humus carbon and hot water extractable carbon has been found out that was not affected the soils depth, sames as the result of the first year. The higher concentration of carbon dioxide, the higher carbon content of humus and hot water extractable carbon content. According to IPCC 2006 Guidelines and the new climate change scenario RCP 4.5 and the measurement results of the total amount of soil organic carbon to the crops due to abnormal climate weather, 1% increase in atmospheric carbon dioxide concentration was found to be small when compared to the growing rate of increasing 0.01058% of organic carbon in the soil.

Estimation of Shear Wave Velocity of Earth Dam Materials Using Artificial Blasting Vibration Test (인공발파진동실험을 이용한 흙댐 축조재료의 전단파속도 산정)

  • Ha, Ik-Soo;Kim, Nam-Ryong;Lim, Jeong-Yeul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.619-629
    • /
    • 2013
  • The objective of this study is to estimate shear wave velocity of earth dam materials using artificially generated vibration from blasting events and to verify its applicability. In this study, the artificial blasting and vibration monitoring were carried out at the site adjacent to Seongdeok dam, which is the first blasting test for an existing dam in Korea. The vibrations were induced by 4 different types of blasting with various depths of blasting boreholes and explosive charge weights. During the tests, the acceleration time histories were recorded at the bedrock adjacent to the explosion and the crest of the dam. From frequency analyses of acceleration histories measured at the crest, the fundamental frequency of the target dam could be evaluated. Numerical analyses varying shear moduli of earth fill zone were carried out using the acceleration histories measured at the bedrock as input ground motions. From the comparison between the fundamental frequencies calculated by numerical analyses and measured records, the shear wave velocities with depth, which are closely related to shear moduli, could be determined. It is found that the effect of different blasting types on shear wave velocity estimation for the target dam materials is negligible and the shear wave velocity can be consistently evaluated. Furthermore, comparing the shear wave velocity with the previous researchers' empirical relationships, the applicability of suggested method is verified. Therefore, in case that the earthquake record is not available, the shear wave velocity of earth dam materials can be reasonably evaluated if blasting vibration test is allowed at the site adjacent to the dam.

Estimation of the amount of refrigerant in artificial ground freezing for subsea tunnel (해저터널 인공 동결공법에서의 냉매 사용량 산정)

  • Son, Youngjin;Choi, Hangseok;Ko, Tae Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.255-268
    • /
    • 2018
  • Subsea tunnel can be highly vulnerable to seawater intrusion due to unexpected high-water pressure during construction. An artificial ground freezing (AGF) will be a promising alternative to conventional reinforcement or water-tightening technology under high-water pressure conditions. In this study, the freezing energy and required time was calculated by the theoretical model of the heat flow to estimate the total amount of refrigerant required for the artificial ground freezing. A lab-scale freezing chamber was devised to investigate changes in the thermal and mechanical properties of sandy soil corresponding to the variation of the salinity and water pressure. The freezing time was measured with different conditions during the chamber freezing tests. Its validity was evaluated by comparing the results between the freezing chamber experiment and the numerical analysis. In particular, the freezing time showed no significant difference between the theoretical model and the numerical analysis. The amount of refrigerant for artificial ground freezing was estimated from the numerical analysis and the freezing efficiency obtained from the chamber test. In addition, the energy ratio for maintaining frozen status was calculated by the proposed formula. It is believed that the energy ratio for freezing will depend on the depth of rock cover in the subsea tunnels and the water temperature on the sea floor.

Analysis of Tree Roughness Evaluation Methods Considering Depth-Dependent Roughness Coefficient Variation (수심별 조도계수 변화를 고려한 수목 조도공식 특성 분석)

  • Du Han Lee;Dong Sop Rhee
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.3
    • /
    • pp.51-63
    • /
    • 2023
  • Riverine tree management is crucial in realizing a balance between flood control and ecological preservation, which requires an accurate assessment of the impact of trees on river water elevations. In this study, eight different formulas for evaluating vegetation roughness considering the drag force acting on trees, were reviewed, and the characteristics and applicability of these methods were evaluated from a practical engineering perspective. The study compared the characteristics of vegetation roughness measurement methods for calculated roughness coefficients at different water depths and analyzed factors such as effects of tree canopy width, tree density and diameter, and tree stiffness coefficient, and water level estimation results. A comparison of roughness coefficients at the same water depths revealed that the Kouwen and Fathi-Moghadam formulas and the Fischenich formula yield excessive drag coefficients compared to other formulas. Factors such as channel geometry, tree diameter, and tree density showed varying trends depending on the formula but did not exhibit excessive outliers. Formulas considering the tree stiffness coefficient, such as the Freeman et al.'s formula and the Whittaker et al.'s formula, showed significant variations in drag coefficients depending on the stiffness coefficient. When applied to small- and medium-sized virtual rivers in South Korea using the drag coefficient results from the eight formulas, the results indicated a maximum increase in water level of approximately 0.2 to 0.4 meters. Based on this review, it was concluded that the Baptist et al., Huthoff et al., Cheng, Luhar, and Nepf's formulas, which exhibit similar characteristics and low input data uncertainties, are suitable for practical engineering applications.

Study on the Concentration Estimation Equation of Nitrogen Dioxide using Hyperspectral Sensor (초분광센서를 활용한 이산화질소 농도 추정식에 관한 연구)

  • Jeon, Eui-Ik;Park, Jin-Woo;Lim, Seong-Ha;Kim, Dong-Woo;Yu, Jae-Jin;Son, Seung-Woo;Jeon, Hyung-Jin;Yoon, Jeong-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.19-25
    • /
    • 2019
  • The CleanSYS(Clean SYStem) is operated to monitor air pollutants emitted from specific industrial complexes in Korea. So the industrial complexes without the system are directly monitored by the control officers. For efficient monitoring, studies using various sensors have been conducted to monitor air pollutants emitted from industrial complex. In this study, hyperspectral sensors were used to model and verify the equations for estimating the concentration of $NO_2$(nitrogen dioxide) in air pollutants emitted. For development of the equations, spectral radiance were observed for $NO_2$ at various concentrations with different SZA(Solar Zenith Angle), VZA(Viewing Zenith Angle), and RAA(Relative Azimuth Angle). From the observed spectral radiance, the calculated value of the difference between the values of the specific wavelengths was taken as an absorption depth, and the equations were developed using the relationship between the depth and the $NO_2$ concentration. The spectral radiance mixed gas of $NO_2$ and $SO_2$(sulfur dioxide) was used to verify the equations. As a result, the $R^2$(coefficient of determination) and RMSE(Root Mean Square Error) were different from 0.71~0.88 and 72~23 ppm according to the form of the equation, and $R^2$ of the exponential form was the highest among the equations. Depending on the type of the equations, the accuracy of the estimated concentration with varying concentrations is not constant. However, if the equations are advanced in the future, hyperspectral sensors can be used to monitor the $NO_2$ emitted from the industrial complex.

Detection of Abnormal Area of Ground in Urban Area by Rectification of Ground Penetrating Radar Signal (지하투과레이더 신호의 보정을 통한 도심지 내 지반 이상구간의 검측)

  • Kang, Seonghun;Lee, Jong-Sub;Lee, Sung Jin;Lee, Jin Wook;Hong, Won-Taek
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.217-231
    • /
    • 2017
  • The subsidence of ground in urban area can be caused by the occurrence of the cavity and the change in ground volumetric water content. The objective of this study is the detection of abnormal area of ground in urban area where the cavity or the change in ground volumetric water content is occurred by the ground penetrating radar signal. GPR survey is carried out on the test bed with a circular buried object. From the GPR survey, the signals filtered by the bandpass filtering are measured, and the methods consisting of gain function, time zero, background removal, deconvolution and display gain are applied to the filtered signals. As a result of application of the signal processing methods, the polarity of signal corresponds with the relation of electrical impedance of the cavity and the ground in test bed. In addition, the relative permittivity calculated by GPR signal is compared with that of predicted by volumetric water content of the test bed. The relative permittivities obtained from two different methods show similar values. Therefore, the abnormal area where the change in ground volumetric water content is occurred can be detected from the results of the GPR survey in case the depth of underground utilities is known. Signal processing methods and estimation of relative permittivity performed in this study may be effectively used to detect the abnormal area of ground in urban area.