• Title/Summary/Keyword: Water circulation facilities

Search Result 70, Processing Time 0.021 seconds

Installation Design of Landscape-use Artificial Channel for Sustainable Management -Focusing on the Water Volume and Equipment System of Streamlet in Jeonju and Wanju Innovation City- (계류형 수경시설의 지속가능한 운영·관리를 위한 설치방안 - 전주·완주 혁신도시 실개천 용량과 설비계통을 중심으로 -)

  • Oh, Chang-Song
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.2
    • /
    • pp.113-127
    • /
    • 2021
  • Although planning techniques linking parks, green areas, and waterways have become common, there are frequent disruptions in the operation and management of landscape-use artificial channels (LuAC). Therefore, this study examined a design to promote the sustainable management and operation of a LuAC using rainwater for the streamlets of the Jeonju-Wanju Innovative City. In order to accomplish the purpose of this study, scenarios were set up by dividing the design into waterhead and waterway portions. First, the scenario regarding the waterhead was analyzed to calculate the water supply and storage required for the waterway and waterhead. The analysis showed that the waterway requires a water supply of 676.8 tons/months, 3,018 tons to 5,512 tons of storage space, and a water depth of 0.75 m to 1.37 m considering the ecological and landscape aspects. The second scenario is to select an effective system of facilities for the operation and management of the LuAC. To accomplish this, a single-circulation system (SCS), which transports water to a highland location was compared to a multi-circulation system (MCS), which supplied water separately to each water space and operated independently. The results showed that the MCS, which was operated independently by small power units, was more effective owing to the vast difference in water supply operation times.

Constructing an Internet of things wetland monitoring device and a real-time wetland monitoring system

  • Chaewon Kang;Kyungik Gil
    • Membrane and Water Treatment
    • /
    • v.14 no.4
    • /
    • pp.155-162
    • /
    • 2023
  • Global climate change and urbanization have various demerits, such as water pollution, flood damage, and deterioration of water circulation. Thus, attention is drawn to Nature-based Solution (NbS) that solve environmental problems in ways that imitate nature. Among the NbS, urban wetlands are facilities that perform functions, such as removing pollutants from a city, improving water circulation, and providing ecological habitats, by strengthening original natural wetland pillars. Frequent monitoring and maintenance are essential for urban wetlands to maintain their performance; therefore, there is a need to apply the Internet of Things (IoT) technology to wetland monitoring. Therefore, in this study, we attempted to develop a real-time wetland monitoring device and interface. Temperature, water temperature, humidity, soil humidity, PM1, PM2.5, and PM10 were measured, and the measurements were taken at 10-minute intervals for three days in both indoor and wetland. Sensors suitable for conditions that needed to be measured and an Arduino MEGA 2560 were connected to enable sensing, and communication modules were connected to transmit data to real-time databases. The transmitted data were displayed on a developed web page. The data measured to verify the monitoring device were compared with data from the Korea meteorological administration and the Korea environment corporation, and the output and upward or downward trend were similar. Moreover, findings from a related patent search indicated that there are a minimal number of instances where information and communication technology (ICT) has been applied in wetland contexts. Hence, it is essential to consider further research, development, and implementation of ICT to address this gap. The results of this study could be the basis for time-series data analysis research using automation, machine learning, or deep learning in urban wetland maintenance.

Environmental Characteristics and Nature-friendly Planning Strategies for an Urban Stream - The Case of Chuncheon's Gongji Stream - (도시하천의 환경특성과 친자연적 계획전략 - 춘천시 공지천을 대상으로 -)

  • Jo Hyun-Kil;Ahn Tae-Won
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.3 s.116
    • /
    • pp.1-11
    • /
    • 2006
  • This study analyzed characteristics of natural and human environments in Chuncheon's Gongji stream, and suggested nature-friendly planning strategies for self-purification of water quality, biodiversity improvement and conservative waterfront recreation. The environmental analysis included streambed structures, floodplain soils, water quality, vegetation, wildlife, and human facilities. Natural colonization of vegetation for the middle section of the study stream was obstructed by a straightened concrete revetment of baseflow channel, and vehicle movement and concrete parking lots across the floodplain. These human disturbances also deteriorated the naturalness of the stream landscape and limited habitation of bird species. However, natural sedimented wetlands in half of the channel width for the lower section of the stream contributed to a desirable vegetational landscape and greater bird occurrence. Based on BOD measurements, water quality of the stream fell under class $II{\sim}III$ of the stream water-quality standard, but it was worse around sewage outlets due to incomplete sewage collection especially during the dry season. Dominant fish species included typical inhabitants of good water-quality streams that are tolerant of adverse habitat changes. Nature-friendly planning strategies were established based on analysis of the environmental characteristics. They focused on not merely spatial zoning and layout divided into four zones - preservation, partial preservation, conservation and use -, but close-to-nature channel revetment techniques, natural water-purification facilities, biotope diversification, and water-friendly recreation and circulation. Strategies pursued both renewal of stream naturalness and hydraulic stability of streamflow by minimizing transformation of natural channel micro-topography and biotope, and by reflecting natural traces of streambed structures such as revetment scour and sedimentation.

Characteristics of airborne radon and thoron levels monitored in Seoul Subway stations and circulation lines (서울 일부 지하철 공기 중 라돈과 토론 발생 특성)

  • Kwak, Hyunseok;Kim, So-Yeon;Park, Jihoon;Choi, Sangjun;Park, Dong-Uk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.2
    • /
    • pp.176-184
    • /
    • 2019
  • Objective: This study aims to characterize airborne radon and thoron levels ($Bq/m^3$) generated from working environments in three subway stations in Seoul. Method: A radon and thoron detector (EQF3220) was used to monitor real-time airborne radon and thoron levels ($Bq/m^3$) and their daughters ($Bq/m^3$) every two hours. They were monitored not only in the driver's cabin of seven circulation lines, but also three offices, platforms, and water pump reservoirs in the three stations. Results: The average levels of radon and thoron were $67.9Bq/m^3$ (range; $7.2-619.4Bq/m^3$) and $44.4Bq/m^3$ (range; $4.3-819.2Bq/m^3$), respectively. Notably, higher than legal airborne radon levels ($600Bq/m^3$) were frequently monitored in the driver's cabin of seven circulation lines. Airborne radon levels monitored in the platforms and administrative offices were found to be over $100Bq/m^3$. The average equilibrium factors (F) were 0.12 and 0.06, respectively. The percentages detected were found to be 84.9 for radon and 72.4 for thoron, respectively. Conclusions: Significant airborne radon and thoron levels were frequently found to be generated in subway facilities including water reservoirs, platforms and driver's cabins. Further study is necessary to thoroughly investigate airborne radon and thoron in all subway stations and to devise proper measures.

Introduction plan of future integrated water circulation management system using LID facility model verification (LID시설 모델검증을 활용한 미래형 통합 물순환관리시스템 도입방안)

  • Lee, Jiwon;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.67-73
    • /
    • 2021
  • As the impermeable area increases due to urbanization and industrialization, the influence of non-point pollutants caused by rainfall runoff on the water system is increasing. In the past, the best management practices(BMP) were used a lot to manage non-point pollutants, but recently, technology that naturally treats them through LID (Low Impact Development) technology is widely used. In this study, various rainfall events were simulated through the SWMM model based on the data of rainfall monitoring in bioretention among natural facilities. The characteristic of LID modeling research is that it is difficult to build accurate modeling data with short-term data because real data is the result obtained through natural facilities, and it is difficult to implement an accurate model. In this study, the data monitored for 3 years It is significant in that it has built a precise model. The actual data monitored a total of 18 times was simulated, and the inflow and outflow and the removal efficiency of five pollutants were simulated. As a result of performing the performance evaluation, most of the 7 items showed excellent indicators, and the TN and TP showed relatively low simulation performance. In the future, it is expected that Korea will introduce an integrated water management system in which the water supply system and the sewage system are substantially integrated and operated. Therefore, the results of this study are considered to play an important role in the initial stage of rainfall management in the future integrated water management system, and the extent of rainfall runoff reduction and pollutant reduction in the expected installation area can be predicted in advance. This is expected to prevent overdesign of bioretention.

Analysis on Appropriate Plants of Infiltration Swale for Road Runoff (도로변 LID 시설인 침투도랑에 적합한 식물 선정에 관한 연구)

  • Lee, Eun Yeob;Hyun, Kyoung hak;Jung, Jong Suk
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.5
    • /
    • pp.19-27
    • /
    • 2016
  • This study is to find appropriate plant for infiltration swale (which is natural LID infrastructure) and suggest basic research database for building infrastructure of LID facilities. Through the research inside, it first selects the plant strong to flooding and salt tolerance. Also, the research built infiltration swale along the road, planted those strong plants and monitored how well those plants adapted into the environment. Particularly, it showered 72mm/hr-speed artificial shower, also with natural shower, given that plants were vulnerable to flood because of influx of the rain. As a result of field applicability monitoring, Pennisetum alopecuroides and Equisetum hyemale (which degrade the pollutant well and adapt into rainy environment) are planting individually, or Juncus effusus var. decipiens, Liriope platyphylla, Miscanthus sinensis Andersson, Euonymus japonica (which are strong to rainy environment) and Pennisetum alopecuroides and Equisetum hyemale are mixed planting. The research should have monitored the plant for more than one year to study them, but the research only lasted five months. Therefore, it is hard to generalize. After all, through the long term research, it should pursue study more on appropriate plant materials and database that can be the reference for infrastructure establishment and maintenance.

A Field Study for Sustainable Community Empowerment through Appropriate Technology of Water Purification and the Concept of Feces Standard Money in Hatphain Village, Lao PDR

  • Heo, Huijin;Choi, Mi-Jin;Im, Tae Hyug;Cho, Jaeweon
    • Journal of Appropriate Technology
    • /
    • v.7 no.2
    • /
    • pp.151-161
    • /
    • 2021
  • The application of appropriate technologies in a developing country is an opportunity to introduce green technology which may lead people to imagine a better life. This point is at the intersection of appropriate technology and sustainable development. This research focuses on Hatphain village where there is no clean water, sewage system, or power lines. Two environmental technologies (an unpowered water purification system, Ongdalsaem and an eco-toilet system, BeeVi toilet) were introduced, based on the concepts of the environmental self- sustainable village and feces Standard Money (fSM). We found that the Ongdalsaem was effective in reducing the concentration of nitrogen and lead in the water in Hatphain. The BeeVi water-free toilet was installed, allowing urine and feces to be separated and used as compost. We strived to spread ideas of sustainability using new eco-circulation experiences and encouraging learning about environmental technology through practical and playing facilities that residents managed themselves.

Development and Cost-effective Evaluation of Grass Blocks Minimizing Construction Waste (건설폐기물을 최소화한 비용 효율적 잔디 블록 기법 개발 및 평가)

  • Jeon, Minsu;Hong, Jungsun;Jeon, Jechan;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.19 no.3
    • /
    • pp.359-365
    • /
    • 2017
  • Impermeable surfaces such as transportation land uses including roads and parking lots accumulate high heavy metals and particulate matters concentration especially during dry season which worsens the river water quality and distort the water circulation system during rainfall events. Recently, the government has been promoting policies to install Low Impact Development (LID) facilities such as permeable pavements or grass blocks in parking lots or pavements. However, transition of asphalt-paved surfaces to permeable pavement generated asphalt wastes which are detrimental to the environment and has cost implications due to its removal and disposal. Therefore this study was conducted to provide a method of constructing a cost-effective permeable pavement to reduce waste generation and cost. In this study, comparative analysis of the water circulation capacity and economic efficiency of the traditional construction method and new method proposed in this study through the lab-scale experiment. The proposed method was to make holes in existing asphalt pavements, layout geotextile fabric and permeable base media such as sand before compaction. After compaction, layout grass blocks on the compacted base media then layout sand in between each grass blocks before compaction. Apparently, there was no significant difference between the traditional installation method of permeable pavement and the proposed method in this study considering surface runoff, infiltrated volume, stored volume, and rainfall-runoff delay time. The proposed method in this study generated 86% less wastes compared to the traditional installation method and has 70% cost reduction considering asphalt removal and disposal. The construction method proposed in this study yielded similar performance compared to the traditional installation method and water circulation effect, but was proven to be less complicated and economical.

On Vortex Reduction Characteristics of Pump Sump Circulating Water Intake Basin of Power Plant Using Hydraulic Experiment (수리실험을 이용한 발전소의 순환수 취수부 흡입수조의 와류저감에 관한 연구)

  • Eom, Junghyun;Lee, Du Han;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.815-824
    • /
    • 2022
  • Among the main facilities of the power plant, the circulating water used for cooling the power generation system is supplied through the Circulation Water Intake Basin (CWIB). The vortexes of various types generated in the Pump Sump (PS) of CWIB adversely affect the Circulation Water Pump (CWP) and pipelines. In particular, the free surface vortex accompanied by air intake brings about vibration, noise, cavitation etc. and these are the causes of degradation of CWP performance, damage to pipelines. Then power generation is interrupted by the causes. Therefore, it is necessary to investigate the hydraulic characteristics of CWIB through the hydraulic model experiment and apply an appropriate Anti Vortex Device (AVD) that can control the vortex to enable smooth operation of the power plant. In general, free surface vortex is controlled by Curtain Wall (CW) and the submerged vortex is by the anti vortex device of the curtain wall. The detailed specifications are described in the American National Standard for Pump Intake Design. In this study, the circulating water intake part of the Tripoli West 4×350 MW power plant in Libya was targeted, the actual operating conditions were applied, and the vortex reduction effect of the anti vortex device generated in the suction tank among the circulating water intake part was analyzed through a hydraulic model experiment. In addition, a floor splitter was basically applied to control the submerged vortex, and a new type of column curtain wall was additionally applied to control the vortex generated on the free surface to confirm the effect. As a result of analyzing the hydraulic characteristics by additionally applying the newly developed Column Curtain Wall (CCW) to the existing curtain wall, we have found that the vortex was controlled by forming a uniform flow. In addition, the vortex angle generated in the circulating water pump pipeline was 5° or less, which is the design standard of ANSI/HI 9.8, confirming the stability of the flow.

The finite element analysis on structural stability of road with infiltration trench (침투도랑 설치에 따른 도로 구조 안정성의 유한요소 해석)

  • Jung, Jong-Suk;Hyun, Kyoung-Hak;Kim, In-Tae;Song, Jin-Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.107-122
    • /
    • 2015
  • The purpose of this study is to analyze the structural stability of pavement due to water infiltration at the road with infiltration trench as using the FEM(finite element analysis). Five cases for FEM is divided considering the amount of rainfall and rain duration time. The results of FEM show that the more rainfall in a short period time is faster the change of moisture content. Also, it is the proportional relationship between and changing area of moisture content of more than 40% due to rainfall. Case 3 and 4 are necessary to check the installation of infiltration trench because of moisture content of more than 40%, recovery time of initial moisture content, and changing area of more than 40%. Case 1,2, and 5 have no a significant effect on road pavement structure due to lower moisture content and shorter duration time of higher moisture content.