• Title/Summary/Keyword: Water capture

Search Result 352, Processing Time 0.03 seconds

Runoff Capture Curve for Non-Point Source Management (비점오염원 관리를 위한 유출포착곡선)

  • Kim, Sangdan;Jo, Deok Jun
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.829-836
    • /
    • 2007
  • For the purpose of managing non-point sources, water quality control basins (WQCBs) are often designed to capture rainfall events smaller than extreme events. The design rainfall statistics and runoff capture rates for sizing a WQCB should be derived from the local long-term continuous rainfall record. In this study, the 31-year continuous rainfall data recorded in Busan is analyzed to derive the synthesized runoff capture curve incorporated with SCS curve number.

Characteristics of Ground Water Capture Zone according to Pumping Rate (지하수 양수량에 따른 지하수유동 및 포획구간 특성 변화)

  • Ahn, Seung-Seop;Park, Dong-Il;Oh, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.22 no.7
    • /
    • pp.895-903
    • /
    • 2013
  • This study analyzed on characteristics of the ground-water capture zone in coastal areas and mid-mountainous area according to pumping rate. For this study, it targeted Jejudo island where is the volcanic island. To analyze, MODFLOW model and MODPATH model, which are the ground-water flow analysis models, were used. As a result of research, the following conclusions could be obtained. As a result of analyzing influence of a change in pumping time upon length of capture zone, the length of capture zone in coastal area was indicated to be greater in the changing ratio compared to the length of capture zone in mid-mountainous area. Next, in the coastal area, the pumping rate and the capture-zone length are changing similarly. However, in mid-mountainous area, the length of capture zone was indicated to grow when the pumping rate comes to exceed 1,500m3/day. As a result of analyzing influence of a change in pumping time upon capture area, the tendency of a change in the area was indicated similarly in coastal areas and mid-mountainous area. Especially, it could be known that the larger pumping rate leads to the more definite increase in tendency to a change in capture area. Based on this study, it was allowed to be possibly used in the suitable pumping rate in coastal areas and mid-mountainous area of the volcano island in the future. A follow-up research is judged to necessarily analyze the influence of tubular-well group upon capture zone by additionally analyzing a change in capture zone targeting the concentrated tubular well.

Control of Turbid Water Transport with Filamentous Mat (섬모상 매트에 의한 탁수이동차단에 관한 실험적 연구)

  • Yu, Jianghua;Yi, Qitao;Kim, Youngchul
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.44-51
    • /
    • 2010
  • A lab-scale apparatus for turbid water transport control was tested and examined. The channel had a dimension of $100cm{\times}30cm{\times}15cm$ (length${\times}$hight${\times}$width). And the turbidity water was prepared using two types of particles, bentonite and loess. The channel equipped with filamentous mat was operated under various shock load conditions. In the control channel, instantly, turbid water mixed with the clean water inside the channel and turbidity prevails the entire channel. While in the mat-equipped channel, it increases only at the bottom. Overall, the filamentous mat gave capture efficiency of 70~90% compared with the control group. The capture efficiency of turbid particles decreased with increased input turbidity flux. The result of experimental run on how turbid particles are separated in the mat channel shows that settling, filtration and attachment are the main processes. Meanwhile, turbidity was diffused from the channel bottom due to turbidity gradient before and after mat zone. The particle size before mat zone was lightly coarser than that after mat zone.

Control of Turbid Water Transport with Filamentous Mat in Lake (섬모상 매트에 의한 저수지와 댐에서 탁수확산차단 기술의 개발)

  • Yi, Qitao;Yu, Jianghua;Park, Sung-Soon;Kim, Young-Chul
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.888-890
    • /
    • 2009
  • This study presented a lab-scale apparatus for turbidity control in the lakes or reservoirs. Overall, the filamentous mat had a capture efficiency of 70~90% compared with the control group. Generally, the capture efficiency decreased with improved input turbidity flux. However, the attachment and sedimentation were thought to be the main processes for turbidity water retention and removal. Thus, the increase of hydraulic detention time in the mat zone is very important to improve the capture efficiency of the turbidity water.

  • PDF

Urban Stormwater Capture Curve using 3-Parameter Mixed Exponential Probability Density Function (3변수 혼합 지수 확률밀도함수를 이용한 도시 강우 유출수 포착곡선의 작성)

  • Han, Suhee;Park, Moo Jong;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.4
    • /
    • pp.430-435
    • /
    • 2008
  • In order to design Non-point source management, the aspect of statistical features of the entire precipitation data should be focused since non-point source discharge is driven by continuous rainfall runoffs. 3-parameter mixed exponential probability density function is used to establish urban stormwater capture curve instead of previous single-parameter exponential PDF. Then, recent 10-year data in Busan are applied to establish the curve. The result shows that 3-parameter mixed PDF gives better resolution.

A Comparative Study Between High and Low Infiltration Soils as Filter Media in Low Impact Development Structures

  • Guerra, Heidi B.;Geronimo, Franz Kevin;Reyes, Nash Jett;Jeon, Minsu;Choi, Hyeseon;Kim, Youngchul;Kim, Lee-Hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.130-130
    • /
    • 2021
  • The increasing effect of urbanization has been more apparent through flooding and downstream water quality especially from heavy rainfalls. In response, stormwater runoff management solutions have focused on runoff volume reduction and treatment through infiltration. However, there are areas with low infiltration soils or are experiencing more dry days and even drought. In this study, a lab-scale infiltration system was used to compare the applicability of two types of soil as base layer in gravel-filled infiltration systems with emphasis on runoff capture and suspended solids removal. The two types of soils used were sandy soil representing a high infiltration system and clayey soil representing a low infiltration system. Findings showed that infiltration rates increased with the water depth above the gravel-soil interface indicating that the available depth for water storage affects this parameter. Runoff capture in the high infiltration system is more affected by rainfall depth and inflow rates as compared to that in the low infiltration system. Based on runoff capture and pollutant removal analysis, a media depth of at least 0.4 m for high infiltration systems and 1 m for low infiltration systems is required to capture and treat a 10-mm rainfall in Korea. A maximum infiltration rate of 200 mm/h was also found to be ideal to provide enough retention time for pollutant removal. Moreover, it was revealed that low infiltration systems are more susceptible to horizontal flows and that the length of the structure may be more critical that the depth in this condition.

  • PDF

An Experimental Study on the Quality Characteristics of Soil-Cement for Deep Mixing Method Using Carbon Capture Minerals(CCM) (이산화탄소 포집광물을 활용한 심층혼합처리용 Soil-Cement의 품질 특성에 관한 실험적 연구)

  • Jung, Woo-Yong;Ju, Hyang-Jong;Oh, Sung-Rok;Choi, Yun-Wang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.153-160
    • /
    • 2020
  • In this study, the optimum ratio of soil-cement was derived to utilize carbon capture minerals(CCM) as soil-cement for deep mixing method, quality characteristics of soil-cement mixed with carbon capture minerals were evaluated. The CCM is generated in the form of a slurry, and as a result of evaluating water content, it was found to be about 50%. Accordingly, the water content of CCM was removed in the unit water of Soil-cement mix. As a result of field mixing of soil-cement using CCM on field soil, it showed that the design allowable bearing capacity was satisfied by showing 3.0MPa or more as of 28 days of age. As a result of the hazard verification of carbon capture minerals, 0.055mg/L of Cu was detected, but satisfies the acceptance criteria, and no other harmful substances were eluted.

Calculation and measurement of Al prompt capture gammas above water in a pool-type reactor

  • Czakoj, Tomas;Kostal, Michal;Losa, Evzen;Matej, Zdenek;Simon, Jan;Mravec, Filip;Cvachovec, Frantisek
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3824-3832
    • /
    • 2022
  • Prompt capture gammas are an important part of the fission reactor gamma field. Because some of the structural materials after neutron capture can emit photons with high energies forming the dominant component of the gamma spectrum in the high energy region, the following study of the high energy capture gamma was carried out. High energy gamma radiation may play a major role in areas of the radiation sciences as reactor dosimetry. The HPGe measurements and calculations of the high-energy aluminum capture gamma were performed at two moderator levels in the VR-1 pool-type reactor. The result comparison for nominal levels was within two sigma uncertainties for the major 7.724 MeV peak. A larger discrepancy of 60% was found for the 7.693 MeV peak. The spectra were also measured using a stilbene detector, and a good agreement between HPGe and stilbene was observed. This confirms the validity of stilbene measurements of gamma flux. Additionally, agreement of the wide peak measurement in 7-9.2 MeV by stilbene detector shows the possibility of using the organic scintillators as an independent power monitor. This fact is valid in these reactor types because power is proportional to the thermal neutron flux, which is also proportional to the production of capture gammas forming the wide peak.

심부지하수 수질 보호를 위한 천부포획정 공법

  • 김강주;박성민;염병우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.511-514
    • /
    • 2003
  • Nowadays, wells tapping the deep aquifers become general because water quality of the shallow groundwater has been gradually degraded over the last 30 years as a result of rapid industrialization and intensive agricultural activities. However, many of the deep wells also suffer problems of water-quality degradation in several years after the well installation, nevertheless those were properly completed and managed. It is believed that the heavy pumping from deep wells causes the doward movement of the contaminated, shallow groundwaters and introduces them into the deep aquifers. In this study, we introduces a shallow capture well system, which could effectively prevent the shallow groundwaters of poor water duality from moving into the deep aquifers by pumping of deep production wells. Even though additional costs are required to apply this system, we believe that this method could be appropriate for the deep wells that are important for the public health.

  • PDF

Design and Implementation of Fluid Flow Generation System by using Water Captures (물받이를 이용한 유수발전장치의 설계 및 구현)

  • Son, Young-Dae;Jung, Hyun-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.413-421
    • /
    • 2012
  • This paper proposes the design and implementation of fluid flow generation system by using polypropylene(PP) water capture, which harvests electric energy from the kinetic energy of tidal current or water flow and drives the desired load, and applies it to the discharge drain of Hadong thermal power plant. This experimental system is composed of water captures, driving wheel, gear trains, 10[kW] synchronous generator, and three phase rectifying circuit which drives lamp load for test. The proposed water capturing system which is composed of water captures, rope and driving wheel, rotates as caterpillar according to water flow. This system is very easy to manufacture and more economical than another type of tidal current turbines such as conventional propeller and helical type. Also, we estimated the available fluid flow energy that can be extracted from the cooling water in discharge drain based on drain's cross-sectional area. Therefore, this paper confirms the validity of proposed fluid flow generation system with water captures and the possibility of its application for renewable energy generation in discharge drain of thermal power plant, from the obtained performance characteristic of this energy conversion system.