Browse > Article
http://dx.doi.org/10.1016/j.net.2022.05.019

Calculation and measurement of Al prompt capture gammas above water in a pool-type reactor  

Czakoj, Tomas (Research Centre Rez Ltd)
Kostal, Michal (Research Centre Rez Ltd)
Losa, Evzen (Research Centre Rez Ltd)
Matej, Zdenek (Masaryk University)
Simon, Jan (Research Centre Rez Ltd)
Mravec, Filip (Masaryk University)
Cvachovec, Frantisek (University of Defence)
Publication Information
Nuclear Engineering and Technology / v.54, no.10, 2022 , pp. 3824-3832 More about this Journal
Abstract
Prompt capture gammas are an important part of the fission reactor gamma field. Because some of the structural materials after neutron capture can emit photons with high energies forming the dominant component of the gamma spectrum in the high energy region, the following study of the high energy capture gamma was carried out. High energy gamma radiation may play a major role in areas of the radiation sciences as reactor dosimetry. The HPGe measurements and calculations of the high-energy aluminum capture gamma were performed at two moderator levels in the VR-1 pool-type reactor. The result comparison for nominal levels was within two sigma uncertainties for the major 7.724 MeV peak. A larger discrepancy of 60% was found for the 7.693 MeV peak. The spectra were also measured using a stilbene detector, and a good agreement between HPGe and stilbene was observed. This confirms the validity of stilbene measurements of gamma flux. Additionally, agreement of the wide peak measurement in 7-9.2 MeV by stilbene detector shows the possibility of using the organic scintillators as an independent power monitor. This fact is valid in these reactor types because power is proportional to the thermal neutron flux, which is also proportional to the production of capture gammas forming the wide peak.
Keywords
PGNAA; Reactor; Radiation heating. Prompt gamma; mcnp;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Boson, G. Agren, L. Johansson, A detailed investigation of HPGe detector response for improved Monte Carlo efficiency calculations, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 587 (2008) 304-314, https://doi.org/10.1016/j.nima.2008.01.062.   DOI
2 J.F. Briesmeister, MCNP TM-A General Monte Carlo N-Particle Transport Code Version 4C, Los Alamos National Laboratory, 2000.
3 J. Rataj, O. Huml, H. Lenka, T. Bily, Benchmark experiments for validation of reaction rates determination in reactor dosimetry, Radiat. Phys. Chem. 104 (2014) 363-367, https://doi.org/10.1016/j.radphyschem.2014.02.004.   DOI
4 M. Kostal, E. Losa, Z. Matej, V. Juricek, D. Harutyunyan, O. Huml, M. Stefanik, F. Cvachovec, F. Mravec, M. Schulc, T. Czakoj, V. Rypar, Characterization of mixed N/G beam of the VR-1 reactor, Ann. Nucl. Energy 122 (2018) 69-78, https://doi.org/10.1016/j.anucene.2018.08.028.   DOI
5 M. Kostal, E. Losa, M. Schulc, J. Simon, T. Bily, V. Rypar, M. Marecek, J. Uhlir, T. Czakoj, R. Capote, A. Trkov, S. Simakov, Validation of IRDFF-II library in VR-1 reactor field using thin targets, Ann. Nucl. Energy 158 (2021), 108268, https://doi.org/10.1016/j.anucene.2021.108268.   DOI
6 D.A. Brown, M.B. Chadwick, R. Capote, A.C. Kahler, A. Trkov, M.W. Herman, A.A. Sonzogni, Y. Danon, A.D. Carlson, M.E. Dunn, D.L. Smith, G.M. Hale, G. Arbanas, R. Arcilla, C.R. Bates, B. Beck, B. Becker, F.B. Brown, R.J. Casperson, J. Conlin, D.E. Cullen, M.-A. Descalle, R. Firestone, T. Gaines, K.H. Guber, A.I. Hawari, J. Holmes, T.D. Johnson, T. Kawano, B.C. Kiedrowski, A.J. Koning, S. Kopecky, L. Leal, J.P. Lestone, C.R. Lubitz, J.I. Marquez Damian, C.M. Mattoon, E.A. McCutchan, S.F. Mughabghab, P. Navratil, D. Neudecker, G.P.A. Nobre, G. Noguere, M. Paris, M.T. Pigni, A.J.M. Plompen, B. Pritychenko, V.G. Pronyaev, D. Roubtsov, D. Rochman, P. Romano, P. Schillebeeckx, S. Simakov, M. Sin, I. Sirakov, B. Sleaford, V. Sobes, E. Soukhovitski, I. Stetcu, P. Talou, I.J. Thompson, S.C. van der Marck, L. Welser-Sherrill, D. Wiarda, M.C. White, J.L. Wormald, R.Q. Wright, M.L. Zerkle, G. Zerovnik, Y. Zhu, ENDF/B-VIII.0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data, Nucl. Data Sheets 148 (2018) 1-142, https://doi.org/10.1016/J.NDS.2018.02.001.   DOI
7 E. Losa, M. Kostal, M. Stefanik, J. Simon, T. Czakoj, Z. Matej, F. Cvachovec, F. Mravec, J. Rataj, L. Sklenka, Validation of the fast neutron field in the radial channel of the VR-1 reactor, J. Nucl. Eng. Radiat. Sci. 7 (2021) 1e9, https://doi.org/10.1115/1.4048906.   DOI
8 T. Czakoj, M. Kostal, Z. Matej, E. Losa, J. Simon, F. Mravec, F. Cvachovec, Measurement of prompt gamma field above the VR-1 water level, EPJ Web Conf. 253 (2021), 04014, https://doi.org/10.1051/epjconf/202125304014.   DOI
9 A. Kolros, O. Huml, M. Kriz, J. Kos, Equipment for neutron measurements at VR-1 Sparrow training reactor, Appl. Radiat. Isot. 68 (2010) 570-574, https://doi.org/10.1016/j.apradiso.2009.09.012.   DOI
10 M. Kostal, J. Soltes, L. Viererbl, Z. Metej, F. Cvachovec, V. Rypar, E. Losa, Measurement of neutron spectra in a silicon filtered neutron beam using stilbene detectors at the LVR-15 research reactor, Appl. Radiat. Isot. 128 (2017) 41-48, https://doi.org/10.1016/J.APRADISO.2017.06.026.   DOI
11 O. Huml, J. Rataj, T. Bily, Application of MCNP for neutronic calculations at VR1 training reactor, in: D. Caruge, C. Calvin, C.M. Diop, F. Malvagi, J.-C. Trama (Eds.), SNA + MC 2013 - Jt. Int. Conf. Supercomput. Nucl. Appl. + Monte Carlo, EDP Sciences, Les Ulis, France, 2014, p. 5103, https://doi.org/10.1051/snamc/201405103.   DOI
12 T. Bily, J. Rataj, O. Huml, O. Chvala, Effect of kinetics parameters on transients calculations in external source driven subcritical VR-1 reactor, Ann. Nucl. Energy 123 (2019) 97e109, https://doi.org/10.1016/J.ANUCENE.2018.09.007.   DOI
13 M. Koleska, L. Viererbl, M. Marek, J. Ernest, M. Sunka, M. Vins, Determination of IRT-2M fuel burnup by gamma spectrometry, Appl. Radiat. Isot. 107 (2016) 92-97, https://doi.org/10.1016/j.apradiso.2015.10.001.   DOI
14 H. Choi, R. Firestone, R. Lindstrom, G. Molnar, S.F. Mughabghab, R. Paviotti-Corcuera, Z. Revay, A. Trkov, V. Zerkin, C. Zhou, Database of Prompt Gamma Rays from Slow Neutron Capture for Elemental Analysis, STI/PUB/12, International Atomic Energy Agency, Vienna, 2007. https://www.iaea.org/publications/7030/database-of-prompt-gamma-rays-from-slow-neutroncapture-for-elemental-analysis.
15 J. Frybort, P. Suk, F. Fejt, Designing stainless steel reflector at VR-1 training reactor, EPJ Web Conf. 239 (2020) 17009, https://doi.org/10.1051/EPJCONF/202023917009.
16 D. Harutyunyan, I. Mirzov, M. Kostal, M. Schulc, V. Klupak, Estimation of void swelling in VVER-1000 baffle using benchmark in LR-0 reactor, in: React. Dosim. 16th Int. Symp., ASTM International, Santa Fe, NM, USA, 2018, pp. 321-334, https://doi.org/10.1520/stp160820170091.   DOI
17 T. Bily, J. Rataj, P. Kladiva, Benchmark on neutron flux spatial effects in subcritical system based on IRT-4 M fuel for near-core positions, Ann. Nucl. Energy 157 (2021), 108231, https://doi.org/10.1016/j.anucene.2021.108231.   DOI
18 D. Matters, Nuclear data for defense nuclear nonproliferation applications, in: Work. Appl. Nucl. Data Act., 2021. WANDA 2021), https://conferences.lbl.gov/event/504/.
19 A. Gruel, K. Ambrozic, C. Destouches, V. Radulovic, A. Sardet, L. Snoj, Gammaheating and gamma flux measurements in the JSI TRIGA reactor: results and prospects, IEEE Trans. Nucl. Sci. 67 (2020) 559-567, https://doi.org/10.1109/TNS.2020.2974968.   DOI
20 M. Kostal, M. Svadlenkova, J. Milcak, The application and comparison of 97Zr and 92Sr in the absolute determination of the contribution of power density and cladding activation in a VVER-1000 Mock-Up on the LR-0 Research Reactor, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 738 (2014) 87-92, https://doi.org/10.1016/J.NIMA.2013.11.107.   DOI
21 S. Aldawahrah, S. Dawahra, K. Khattab, G. Saba, M. Boush, Calculation of fuel burnup and radionuclide inventory for the HEU and potential LEU fuels in the IRT research reactor, Results Phys. 11 (2018) 564-569, https://doi.org/10.1016/j.rinp.2018.09.044.   DOI
22 A.M. Parsons, Review of nuclear techniques for planetary science, Int. J. Mod. Phys. Conf. Ser. 50 (2020), 2060004, https://doi.org/10.1142/S2010194520600046.   DOI
23 R. Capote, A. Trkov, INDC International Nuclear Data Committee: Evaluation of Thermal Neutron Capture Gamma Spectra, 2020. Vienna, https://www-nds.iaea.org/publications/indc/indc-nds-0810.pdf.
24 P. Dryak, P. Kovar, Experimental and MC determination of HPGe detector efficiency in the 40-2754 keV energy range for measuring point source geometry with the source-to-detector distance of 25 cm, Appl. Radiat. Isot. 64 (2006) 1346-1349, https://doi.org/10.1016/J.APRADISO.2006.02.083.   DOI
25 M.N. Anikin, I.I. Lebedev, A.G. Naymushin, N.V. Smolnikov, Feasibility study of using IRT-T research reactor for BNCT applications, Appl. Radiat. Isot. 166 (2020) 109243, https://doi.org/10.1016/j.apradiso.2020.109243.   DOI
26 J. Cvachovec, F. Cvachovec, Maximum likelihood estimation of a neutron spectrum and associated uncertainties, Adv. Mil. Technol. 3 (2008) 67-79. http://aimt.unob.cz/articles/08_02/08_02 (8).pdf. (Accessed 10 September 2020).
27 C.J. Werner, J.S. Bull, C.J. Solomon, F.B. Brown, G.W. McKinney, M.E. Rising, D.A. Dixon, R.L. Martz, H.G. Hughes, L.J. Cox, A.J. Zukaitis, J.C. Armstrong, R.A. Forster, L. Casswell, MCNP Version 6.2 Release Notes, 2018, https://doi.org/10.2172/1419730. Los Alamos, NM (United States).   DOI
28 M. Kostal, F. Cvachovec, V. Rypar, V. Juricek, Calculation and measurement of neutron flux in the VVER-1000 mock-up on the LR-0 research reactor, Ann. Nucl. Energy 40 (2012) 25e34, https://doi.org/10.1016/J.ANUCENE.2011.10.003.   DOI
29 T. Miller, Secondary gamma production, in: Work. Appl. Nucl. Data Act., WANDA 2021), 2021. https://conferences.lbl.gov/event/504/contributions/4103/attachments/3085/1685/miller-secGam-wanda2021.pdf.
30 M. Jalali, M.R. Abdi, M.M. Davati, Prompt gamma radiation as a new tool to measure reactor power, Radiat. Phys. Chem. 91 (2013) 19-27, https://doi.org/10.1016/j.radphyschem.2013.05.033.   DOI
31 M.-L. Mauborgne, R.J. Radtke, C. Stoller, F. Haranger, Impact of the ENDF/BVIII.0 library on modeling nuclear tools for oil exploration, EPJ Web Conf. 239 (2020), 20007, https://doi.org/10.1051/epjconf/202023920007.   DOI