• Title/Summary/Keyword: Water and Wastewater Treatment

Search Result 2,071, Processing Time 0.03 seconds

Mixture Toxicity Test of Ten Major Chemicals Using Daphnia magna by Response Curve Method (독성 반응곡선을 이용한 수계 주요 오염물질의 혼합독성평가)

  • Ra, Jin-Sung;Kim, Ki-Tae;Kim, Sang-Don;Han, Sang-Guk;Chang, Nam-Ik;Kim, Yong-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.67-74
    • /
    • 2005
  • Toxicity tests were performed to evaluate the feasibility of application with prediction models to 10 mixture chemicals (chloroneb, butylbenzylphthalate, pendimethaline, di-n-butylphthalate, di-iso-butylphthalate, diazinon, isofenphos, 2-chlorophenol, 2,4,6-trichlorophenol and p-octylphenol) detected in effluents from wastewater treatment plants (WWTPs). Ten chemicals were selected in the basis of their toxicities to Daphnia magna and the concentrations in effluents measured by GC/MS. Three models including concentration addition (CA), independent action (IA) and effect summation (ES) were employed for the comparison of the predicted and the observed mortality of D. magna exposed to 10 mixture chemicals for 48 hours. With a comparative study it was ineffective to predict the mortality through the CA and the ES prediction model, while the IA prediction model showed a high correlation($r^2\;=\;0.85$). Moreover, the ES model over-estimated the toxicity observed by bioassay experiments about five-fold. Consequently, IA model is a reasonable tool to predict the mixture toxicity of the discharging water from WWTPs.

The Characteristics and the Effects of Pollutant Loadings from Nonpoint Sources on Water Quality in Suyeong Bay (수영만 수질에 미치는 비점원 오염부하의 특성과 영향)

  • CHO Eun Il;LEE Suk Mo;PARK Chung-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.3
    • /
    • pp.279-293
    • /
    • 1995
  • The most obvious and easily recognizable sources of potential water pollution are point sources such as domestic and industrial wastes. But recently, the potential effects of nonpoint sources on water quality have been increased apparently. In order to evaluate the characteristics and the effects of nonpoint sources on water quality, this study was performed in Suyeong Bay from May, 1992 to July, 1992. The depth-averaged 2-dimensional numerical model, which consists of the hydrodynamic model and the diffusion model was applied to simulate the water quality in Suyeong Bay. When flowrate was $65.736m^3/s,$ the concentration of pollutants (COD, TSS and VSS) at Oncheon stream (Sebeong bridge) during second flush were very high as much as 121.4mg/l of COD, 1148.0mg/l of TSS and 262.0mg/1 of VSS. When flowrate was 4.686m^3/s, the concentration of pollutants $(TIN,\;NH_4\;^+-\;N,\;NO_2\;^--N\;and\;PO_4\;^{3-}-P)$ during the first flush were very high as much as 20.306mg/1 of TIN, 14.154mg/1 of $NH_4\;^+-N$, 9.571mg/l of $NO_2\;^--N$ and l.785mg/l of $PO_2\;^{3-}-P$ As results of the hydrodynamic model simulation, the computed maximum velocity of tidal currents in Suyeong Bay was 0.3m/s and their direction was clockwise flow for ebb tide and counter clockwise flow for Hood tide. Four different methods were applied for the diffusion simulation in Suyeong Bay. There were the effects for the water quality due to point loads, annual nonpoint loads and nonpoint loads during the wet weather and the investigation period, respectively. The efforts of annual nonpoint loads and nonpoint loads during the wet weather seem to be slightly deteriorated in comparison with the effects of point loads. However, the bay was significantly polluted by the nonpoint loads during the investigation period. In this case, COD and SS concentrations ranged 2.0-30.0mg/l, 7.0- 200.0mg/l in ebb tide, respectively. From these results, it can be emphasized that the large amount of pollutants caused by nonpoint sources during the wet weather were discharged into the bay, and affected significantly to both the water quality and the marine ecosystem. Therefore, it is necessary to consider the loadings of nonpoint pollutants to plan wastewater treatment plant.

  • PDF

Environmental Capacity Assessment of Busan City (부산시 환경용량평가에 관한 연구)

  • Hwang, Kyung-Yup;Hwang, Inseong;Lee, Soon-Kyu;Jo, Seung-Wu;Oh, Kwang-Joong
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.1
    • /
    • pp.79-92
    • /
    • 2006
  • Environmental capacity assessment of Busan city was conducted to provide basis for planning on sustainable development and growth of the city. Using Onish model, assessment was carried out on amenities and service facilities for the citizens of Busan city. Ecological Footprint model was used to judge if the city exceeds the its environmental capacity and to estimate the extent of the excess if it exists. The analysis using Onish model revealed that the citizens of Busan city are generally well supported by the infrastructure and service facilities of the city. Water treatment and supply facilities have enough capabilities to support the city, whereas the relatively low rate of sanitary sewer supply (78%) suggests the need for further improvement in the wastewater area. The capacities of sanitary landfills are found sufficient enough to support the city for the next 10 years. The high value for the line length served per capita in the subway sector hints on certain inconvenience of commuters. All the air quality indicators meet the Korean and WHO standards except for $NO_2$. The ecological footprint model analysis produced EF indicators for Busan city of 3.04 ha/person and 2.54 ha/person for the years of 1993 and 2003, respectively. The decrease of the indicator from 1993 to 2003 is mainly due to the incorporation of Gijang area by Busan city in 1995, suggesting the importance of the ecologically productive area in the evaluation using this model. The analysis on the ecological deficit that is based on ecologically productive land shows that the consumption by Busan city exceeds its ecologically available production by 19,600% as of 2003. The area needed to support the consumption of Busan city in 2003 is 123 times as large as the present area of Busan city, which is substantially lower than the multiplier (742) obtained for Seoul city in 1997 but is higher than those observed for Chongju city (71 in 1999) and Ulsan city (39 in 2001).

Characteristics of Antibiotic Resistant Bacteria in Urban Sewage and River (도시하수 및 그 주변 하천 환경 중 항생제 내성 세균 노출 특성)

  • Oh, Hyang-Kyun;Park, Joon-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.3
    • /
    • pp.232-239
    • /
    • 2009
  • This research investigated the characteristics of antibiotic resistance of bacteria in microbial communities from municipal wastewater treatment plants (MWTPs), and monitored seasonal changes of antibiotic resistant bacteria (ARB) from MWTPs and Han river. When antibiotics were amended to either R2A agar (R2A) for general heterotrophs or MacConeky sorbitol agar (MSA) for coliform bacteria, all the MWTP samples exhibited multiple antibiotic resistance on the antibiotic-amended solid media. The antibiotic resistance appearing frequencies of ampicillin and sulfathiazole, respectively, were higher than reported data for other countries. The antibiotic resistance appearances differed depending upon the concentrations of primary substrate and nutrients and the types of cultivation media. The following 16S rRNA gene phylogenetic analysis showed that the identified multiple-antibiotic resistant microbes on R2A plates were more likely to be known human-pathogenic bacteria than the background heterotrophic bacteria were, suggesting a high risk of antibiotic resistance appearance to public health. In addition, according to our investigation of seasonal changes of ARB from urban MWTP and river samples, the frequency of ARB appearances was shown to correlate positively with temperature. This indicates a possibility that global warming result in increase in microbial risk to public health.

High Temperature Desulfurization over ZnO-Fe2O3 Mixed Metal Oxide Sorbent (ZnO-Fe2O3 복합금속 산화물을 이용한 고온에서의 황화수소 제거에 관한 연구)

  • Lee, Jae-Bok;Lee, Young-Soo;Yoo, Kyong-Ok
    • Journal of Environmental Health Sciences
    • /
    • v.20 no.1
    • /
    • pp.62-67
    • /
    • 1994
  • Introduction : Recently, water and environmental pollution becomes serious social problem and high technology makes this pollution accelerate. Hydrogen sulfide, the main subject of our research, is one of the most dangerous air pollutant like SO$_x$ and NO$_x$. The major contaminant in coal gasification is H$_2$S, which is very toxic, hazardous and extremely corrosive. Therefore, control of hydrogen sulfide to a safe level is essential. Although commercial desulfurization process called liquid scrubbing is effective for removal of H$_2$S, it has drawbacks, the loss of sensible heat of the gas and costly wastewater treatment. Many investigations are carried out about high-temperature removal ol H$_2$S in hot coal-derived gas using metal oxide or mixed metal qxide sorbents. It was reported that ZnO was very effective sorbent for H2S removal, but it has big flaw to vaporize elemental zinc above 600\ulcorner \ulcorner As alternative, metal oxides such as CaO, $Fe_2O_3$, TiO$_2$ and CuO were added to ZnO. Especially, different results are reported for $Fe_2O_3$ additive. Tamhankar et al. reported SiO$_2$ with 45 wt% $Fe_2O_3$ sorbent is favorable for removal of H$_2$S and regeneration.

  • PDF

Adsorption Characteristics of Cadmium ions from Aqueous Solution using by-product of Brewing (주정오니를 활용한 수중의 카드뮴(Cd) 흡착 특성)

  • Kim, Min-Su;Ham, Kwang-Joon;Ok, Yong-Sik;Gang, Seon-Hong
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.2
    • /
    • pp.152-158
    • /
    • 2010
  • Biosorption is considered to be an alternative method to replace the present adsorbent systems for the treatment of metal contaminated wastewater. In this study, by-product which was abandoned from brewing factory was used to remove metal component in aqueous solution. The experimental results showed that the range of the removal efficiency is 60~91% and adsorption equilibrium was reached in about 3 hr. FT-IR and stereo microscope has been used to observe the surface conditions and changes in functional groups by calcination. At the end of elution, the amount of nitrogen and phosphorus in water was increased 11 and 7 times compare raw sample to calcinated samples. The Langmuir isotherm adequately described the adsorption of waste materials and the maximum adsorption capacity was 28.17 mg/g for Cd. The overall results suggested that waste material might can be used for biosorption of Cd.

Characterization of Perchlorate-Removal Using Elemental Sulfur Granules and Activated Sludge (원소 황 입자와 활성슬러지를 이용한 퍼클로레이트 제거특성)

  • Han, Kyoung-Rim;Ahn, Yeonghee
    • Journal of Life Science
    • /
    • v.23 no.5
    • /
    • pp.676-681
    • /
    • 2013
  • Perchlorate (${ClO_4}^-$) is an emerging contaminant found in surface water and soil/groundwater. Microbial removal of perchlorate is the method of choice since perchlorate-reducing bacteria (PRB) can reduce perchlorate to harmless end-products. A previous study [3] showed experimental evidence of autotrophic perchlorate removal using elemental sulfur granules and activated sludge. The granular sulfur is a relatively inexpensive electron donor, and activated sludge is easily available from a wastewater treatment plant. A batch test was performed in this study to further investigate the effect of various environmental parameters on the perchlorate degradation by sludge microorganisms when elemental sulfur was used as electron donor. Results of the batch test suggest optimum conditions for autotrophic perchlorate degradation by sludge microorganisms. The results also show that sulfur-oxidizing PRB enriched from activated sludge removed perchlorate better than activated sludge. Taken together, this study suggests that autotrophic perchlorate removal using elemental sulfur and activated sludge can be improved by employing optimized environmental conditions and enrichment culture.

Removal Velocities of Pollutants under Different Wastewater Injection Methods in Constructed Wetlands for Treating Livestock Wastewater (인공습지 축산폐수처리장에서 주입방법에 따른 오염물질의 제거속도 평가)

  • Kim, Seong-Heon;Seo, Dong-Cheol;Park, Jong-Hwan;Lee, Choong-Heon;Lee, Seong-Tea;Jeong, Tae-Uk;Kim, Hong-Chul;Ha, Yeong-Rae;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.272-279
    • /
    • 2012
  • In order to effectively treat livestock wastewater in constructed wetlands by natural purification method, removal velocities of pollutants under different injection methods in constructed wetlands were investigated. The removal velocities of chemical oxygen demand (COD), suspended solid (SS), T-N and T-P by continuous injection method were slightly rapid than those by intermittent injection method in full-scale livestock wastewater treatment plant. The removal velocity (K; $day^{-1}$) of COD by continuous injection method was $0.38\;d^{-1}$ for $1^{st}$ bed, $0.13\;d^{-1}$ for $2^{nd}$ bed, $0.17\;d^{-1}$ for $3^{rd}$ bed, $0.05\;d^{-1}$ for $4^{th}$ bed and $0.17\;d^{-1}$ for $5^{th}$ bed. The removal velocities (K; $day^{-1}$) of COD in $1^{st}$, $2^{nd}$, $3^{rd}$, $4^{th}$ and $5^{th}$ beds by intermittent injection method were $0.210\;d^{-1}$, $0.086\;d^{-1}$, $0.222\;d^{-1}$, $0.053\;d^{-1}$ and $0.137\;d^{-1}$, respectively. The removal velocity (K; $day^{-1}$) of SS by continuous injection method was $0.750\;d^{-1}$ for $1^{st}$ bed, $0.108\;d^{-1}$ for $2^{nd}$ bed, $0.120\;d^{-1}$ for $3^{rd}$ bed, $0.086\;d^{-1}$ for $4^{th}$ bed and $0.292\;d^{-1}$ for $5^{th}$ bed. The removal velocities (K; $day^{-1}$) of SS in $1^{st}$, $2^{nd}$, $3^{rd}$, $4^{th}$ and $5^{th}$ beds by intermittent injection method were $0.485\;d^{-1}$, $0.056\;d^{-1}$, $0.174\;d^{-1}$, $0.081\;d^{-1}$ and $0.227\;d^{-1}$, respectively. The removal velocity (K; $day^{-1}$) of T-N by continuous injection method was $0.361\;d^{-1}$ for $1^{st}$ bed, $0.121\;d^{-1}$ for $2^{nd}$ bed, $109\;d^{-1}$ for $3^{rd}$ bed, $0.047\;d^{-1}$ for $4^{th}$ bed and $0.155\;d^{-1}$ for $5^{th}$ bed. The removal velocities (K; $day^{-1}$) of T-N in $1^{st}$, $2^{nd}$, $3^{rd}$, $4^{th}$ and $5^{th}$ beds by intermittent injection method were $0.235\;d^{-1}$, $0.071\;d^{-1}$, $0.171\;d^{-1}$, $0.058\;d^{-1}$ and $0.126\;d^{-1}$, respectively. The removal velocity (K; $day^{-1}$) of T-P by continuous injection method was $0.803\;d^{-1}$ for $1^{st}$ bed, $0.084\;d^{-1}$ for $2^{nd}$ bed, $0.076\;d^{-1}$ for $3^{rd}$ bed, $0.118\;d^{-1}$ for $4^{th}$ bed and $0.301\;d^{-1}$ for $5^{th}$ bed. The removal velocities (K; $day^{-1}$) of T-P in $1^{st}$, $2^{nd}$, $3^{rd}$, $4^{th}$ and $5^{th}$ beds by intermittent injection method were $0.572\;d^{-1}$, $0.049\;d^{-1}$, $0.090\;d^{-1}$, $0.112\;d^{-1}$ and $0.222\;d^{-1}$, respectively.

Optimization of Manufacturing Method for a Fiber Type of Biosorbent from Sludge Waste (폐슬러지로부터 섬유형 생체흡착제 제조방법의 최적화)

  • Seo, Ji Hae;Kim, Namgyu;Park, Munsik;Lee, Sunkyung;Park, Donghee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.9
    • /
    • pp.641-647
    • /
    • 2014
  • In this study, sludge waste which has a difficulty in treating it was used to manufacture a fiber type of biosorbent. To solve the problems such as the release of organic pollutants and the difficulty in separating solid from treated water, entrapment method using Ca-alginate was used to immobilize sludge waste. Considering ease of manufacture as well as improvement of adsorptive ability, the biosorbent was manufactured in the form of fiber type. Optimum immobilization condition for minimizing the amount of alginate used and maximizing the performance of biosorbent was determined to be 10 g/L alginate concentration, 40 g/L sludge concentration, and 0.3-0.4 mm fiber diameter. The maximum Cd(II) uptake of the biosorbent was 60.73 mg/g. Pseudo-second-order kinetic model and Langmuir isotherm model adequately described the dynamic and equilibrium behaviors of Cd(II) biosorption onto the biosorbent, respectively. In conclusion, sludge waste generated from wastewater treatment process is a cheap raw material for the manufacture of biosorbent which can be used to remove toxic heavy metals from industrial wastewaters efficiently.

Copper Accumulation in Cells of Copper-Tolerant Bacteria, Pseudomonas stutzeri (구리 내성균(Pseudomonas stutzeri)의 균체내 구리 축적특성)

  • Cho, Ju-Sik;Han, Mun-Gyu;Lee, Hong-Jae;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.1
    • /
    • pp.48-54
    • /
    • 1997
  • This study was performed to develop the biological treatment technology of wastewater polluted with heavy metals. The copper-tolerant bacteria, Pseudomonas stutzeri which possessed the ability to accumulate copper, was isolated from mine wastewaters polluted with various heavy metals. The characteristics of copper accumulation in the cells and the recovery of the copper from the cells accumulating zinc, were investigated. Removal rate of copper from the solution containing 100mg/l of copper by copper-tolerant bacteria was more than 78% at 2 days after inoculation with the cells. A large number of the electron-dense granules were found mainly on the cell wall and cell membrane fractions, when determined by transmission electron microscopy. Energy dispersive X-ray spectroscopy revealed that the electron-dense granules were copper complex with the substances binding copper. The copper accumulated into the cells was not desorbed by deistilled water, but more than 80% of the copper accumulated was desorbed by 0.1M-EDTA solution. The residues of the cells after combustion at $550^{\circ}C$ amounted to about 23.2% of the dry weight of the cells. EDS analysis showed that residues were relatively pure copper compound containing more than 78.4% of copper.

  • PDF