• Title/Summary/Keyword: Water Yield Function

Search Result 99, Processing Time 0.028 seconds

Economic Impact Analysis on High-yield Groundwater Development R&D Project in Jeju (제주도 청정 대용량 지하수개발 연구사업의 경제적 효과분석)

  • Ahn, Eun-Young;Kim, Seong-Yong
    • Economic and Environmental Geology
    • /
    • v.42 no.2
    • /
    • pp.133-141
    • /
    • 2009
  • For economic impact analysis on a R&D project of high-yield groundwater development in Jeju conducted by KIGAM from 2004 to 2007, benefit/cost ratio(BCR), net present value(NPV), and internal rate of return(IRR) were calculated by contingent valuation method(CVM), production function analysis, domestic water market analysis and technology factor analysis. Measurable direct impact parameters among the major outputs of this R&D project consisted the estimation 4 high-yield and high mineral groundwater reserve in Jeju. Annual use of the reserve by piped water and bottled water was estimated as 12.23 million ton and its monetary value was calculated as 293.4 million dollar in 2006 year value applied of 5.5% discount rate. Economic impact of this R&D project in NPV of year 2006, with applying a discount rate of 5.5%, was identified and estimated as 13.66 million dollar in NPV, 4.05 points in BCR, and 22.74% in IRR, respectively. Additional early launch benefit was 5.58 million dollar. Even increased of the 1% discount rate, NPV of this R&D project was also positive as 12.18 million dollar and BCR was 3.71.

A smeared crack model for seismic failure analysis of concrete gravity dams considering fracture energy effects

  • Hariri-Ardebili, Mohammad Amin;Seyed-Kolbadi, Seyed Mahdi;Mirzabozorg, Hasan
    • Structural Engineering and Mechanics
    • /
    • v.48 no.1
    • /
    • pp.17-39
    • /
    • 2013
  • In the present paper, a coaxial rotating smeared crack model is proposed for mass concrete in three-dimensional space. The model is capable of applying both the constant and variable shear transfer coefficients in the cracking process. The model considers an advanced yield function for concrete failure under both static and dynamic loadings and calculates cracking or crushing of concrete taking into account the fracture energy effects. The model was utilized on Koyna Dam using finite element technique. Dam-water and dam-foundation interactions were considered in dynamic analysis. The behavior of dam was studied for different shear transfer coefficients considering/neglecting fracture energy effects. The results were extracted at crest displacement and crack profile within the dam body. The results show the importance of both shear transfer coefficient and the fracture energy in seismic analysis of concrete dams under high hydrostatic pressure.

Processing parallel-disk viscometry data in the presence of wall slip

  • Leong, Yee-Kwong;Campbell, Graeme R.;Yeow, Y. Leong;Withers, John W.
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.2
    • /
    • pp.51-58
    • /
    • 2008
  • This paper describes a two-step Tikhonov regularization procedure for converting the steady shear data generated by parallel-disk viscometers, in the presence of wall slip, into a shear stress-shear rate function and a wall shear stress-slip velocity functions. If the material under test has a yield stress or a critical wall shear stress below which no slip is observed the method will also provide an estimate of these stresses. Amplification of measurement noise is kept under control by the introduction of two separate regularization parameters and Generalized Cross Validation is used to guide the selection of these parameters. The performance of this procedure is demonstrated by applying it to the parallel disk data of an oil-in-water emulsion, of a foam and of a mayonnaise.

Cost Analysis Model according to Mortality in Land-based Aquaculture (육상수조 어류양식 생존율에 따른 비용분석모형)

  • Eh, Youn-Yang
    • The Journal of Fisheries Business Administration
    • /
    • v.47 no.4
    • /
    • pp.1-13
    • /
    • 2016
  • Fish mortality is the most important success factor in aquaculture management. To analyze the effect of mortality considering biological and economic condition is a important problem in land-based aquaculture. This study is aimed to analyze the effect of mortality for duration of cultivation in land-based aquaculture. This study builds the mathematical model that finds the value of decision variable to minimize cost that sums up the water pool usage cost, sorting cost, fingerling cost and feeding cost under critical standing corp constraint. The proposed mathematical model involves many aspects, both biological and economical: (1) number of fingerlings (2) timing and number of batch splitting event, based on (3) fish growth rate, (4) mortality, and (5) several farming expense. Numerical simulation model presented here in. The objective of numerical simulation is to provide for decision makers to analyse and comprehend the proposed model. When extensive biological and cost data become available, the proposed model can be widely applied to yield more accurate results.

On the Improved Green Integral Equation applied to the Water-wave Radiation-Diffraction Problem

  • Do-Chun,Hong
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 1987
  • It is shown that irregular frequencies in the source and doublet distribution method, can be eliminated if the Green function associated with Kelvin's source of pulsating strength, is modified only in the region inside the body at the level of the undisturbed free surface. The system of the resulting Green integral equation is augmented without loss of the square-integrable property of its kernel so hat the discretisation yield N linearly independent equations for N unknown variables. From the solution, the potential and velocity at any point on the wetted surface of a surface-piercing body can be found using the properties of the double layer composed of the source and normal doublet distribution.

  • PDF

Applications of Ground-Based Remote Sensing for Precision Agriculture

  • Hong Soon-Dal;Schepers James S.
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2005.08a
    • /
    • pp.100-113
    • /
    • 2005
  • Leaf color and plant vigor are key indicators of crop health. These visual plant attributes are frequently used by greenhouse managers, producers, and consultants to make water, nutrient, and disease management decisions. Remote sensing techniques can quickly quantify soil and plant attributes, but it requires humans to translate such data into meaningful information. Over time, scientists have used reflectance data from individual wavebands to develop a series of indices that attempt to quantify things like soil organic matter content, leaf chlorophyll concentration, leaf area index, vegetative cover, amount of living biomass, and grain yield. The recent introduction of active sensors that function independent of natural light has greatly expanded the capabilities of scientists and managers to obtain useful information. Characteristics and limitations of active sensors need to be understood to optimize their use for making improved management decisions. Pot experiments involving sand culture were conducted in 2003 and 2004 in a green house to evaluate corn and red pepper biomass. The rNDVI, gNDVI and aNDVI by ground-based remote sensors were used for evaluation of corn and red pepper biomass. The result obtained from the case study was shown that ground remote sensing as a non-destructive real-time assessment of plant nitrogen status was thought to be a useful tool for in season crop nitrogen management providing both spatial and temporal information.

  • PDF

Productivity of the Flounder Stocking Density on the Flounder Culture Farms (넙치양식장 밀식에 따른 생산성에 관한 연구)

  • Eh, Youn-Yang
    • The Journal of Fisheries Business Administration
    • /
    • v.42 no.2
    • /
    • pp.85-96
    • /
    • 2011
  • Oliver flounder population density affect Oliver flounder growth and mortality rate. In laboratory pilot experiment, Oliver flounder growth rate is inversely proportional to stocking density. But previous study has not proved external validity. This study is aimed to analyze the effect of stocking density on the Oliver flounder culture farms in Jeju Island. In order to do this, I selected 13 farms in Jeju island as a sample. In the study, various analytical methods including productivity analysis, regression analysis, statistical analysis were conducted for 13 Oliver flounder culture farms. The result of analysis can be summarized as follows. First, in case of the Oliver flounder culture farms, Bertalanffy equation is not applicable to the Oliver flounder growth. Second, the Oliver flounder stocking density, defined as the surface area of Oliver flounder per $m^2$ of water surface area, is preferred to density definition defined as the weight of Oliver flounder per $m^2$ of water surface area on the Oliver Flounder Culture Farms case. Third, growth rate and production weight on the Oliver flounder culture farms are inversely proportional to stocking density on spearman rank correlation test. When extensive comparable biological and culture condition data become available, analysis model can be easily modified to yield more accurate results.

Numerical study of a freely falling rigid sphere on water surface (수면 위 자유 낙하 및 충돌하는 강체 구의 수치해석 연구)

  • Ku, BonHeon;Pandey, Deepak Kumar;Lim, Hee-Chang
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.2
    • /
    • pp.15-25
    • /
    • 2021
  • Numerical studies on the hydrodynamics of a freely falling rigid sphere in bounded and unbounded water domains are presented having investigation on the drag coefficient, normalized velocity, surface pressure and skin friction coefficient as a function of time. Two different conditions of the bounded and unbounded domains have been simulated by setting the blockage ratio. Four cases of bounded domains (B.R. = 1%, 25%, 45%, 55%, 65% and 75%) have been taken, whereas the unbounded domain has been considered with 0.01%. In the case of the bounded domain (higher values of B.R.), a substantial reduction in normalized velocity and increase in the drag coefficient have been found in presence of the bounded domain. Moreover, bounded domains also yield a significant increase in the pressure coefficient when the sphere is partially submerged, but the insignificant effect is found on the skin friction coefficient. In the case of the unbounded domain, a significant reduction in normalized velocity occurs with a decrease in Reynolds number (Re) and also increase in the drag coefficient.

A Case Study for Applying Linear Programming to Analyze The Effects of The Desired Future Conditions for Forest Functions on Forest Management (산림기능별 목표임상 조건이 산림경영에 미치는 영향분석을 위한 선형계획기법 적용 연구)

  • Jang, Kwangmin;Won, Hyun-Kyu;Seol, A Ra;Chung, Joosang
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.3
    • /
    • pp.247-254
    • /
    • 2009
  • In this study, linear programming was applied to a case study in Gwangreung Experimental Forest of Korea Forest Research Institute investigating the effect of the desired future conditions on forest management. Considering the social, economic and ecological demands of people from the forest, the forest functions were classified into four including natural conservation, timber production, water yield and scenic conservation. The forest land areas were divided into four-types of forest functional zones and forest management prescriptions including the desired future conditions by the forest function type were established. The Model II linear programming was used in optimizing the forest management planning. The model includes management policies, as the constraints, for non-declining yield, allowable cutting area, allowable % age class distribution and allowable % species allocation as well as the land and other accounting regimes. Maximization of timber production was used the objective function. Based on the Model II formulations, the effects of the desired future conditions by the forest function type on forest management planning were investigated in terms of timber production, net present value and stand structures over time.

Optimal Design of Water Distribution System considering the Uncertainties on the Demands and Roughness Coefficients (수요와 조도계수의 불확실성을 고려한 상수도관망의 최적설계)

  • Jung, Dong-Hwi;Chung, Gun-Hui;Kim, Joong-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.73-80
    • /
    • 2010
  • The optimal design of water distribution system have started with the least cost design of single objective function using fixed hydraulic variables, eg. fixed water demand and pipe roughness. However, more adequate design is accomplished with considering uncertainties laid on water distribution system such as uncertain future water demands, resulting in successful estimation of real network's behaviors. So, many researchers have suggested a variety of approaches to consider uncertainties in water distribution system using uncertainties quantification methods and the optimal design of multi-objective function is also studied. This paper suggests the new approach of a multi-objective optimization seeking the minimum cost and maximum robustness of the network based on two uncertain variables, nodal demands and pipe roughness uncertainties. Total design procedure consists of two folds: least cost design and final optimal design under uncertainties. The uncertainties of demands and roughness are considered with Latin Hypercube sampling technique with beta probability density functions and multi-objective genetic algorithms (MOGA) is used for the optimization process. The suggested approach is tested in a case study of real network named the New York Tunnels and the applicability of new approach is checked. As the computation time passes, we can check that initial populations, one solution of solutions of multi-objective genetic algorithm, spread to lower right section on the solution space and yield Pareto Optimum solutions building Pareto Front.