• Title/Summary/Keyword: Water Tube Boiler

Search Result 58, Processing Time 0.024 seconds

Reliability Improvement Method of Weld Zone in Water Wall Tube for an Ultra Supercritical Coal Fired Boiler (초초임계압 석탄화력 보일러 수냉벽 수관의 용접신뢰성 향상방안)

  • Ahn, Jong-Seok;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.6 no.3
    • /
    • pp.53-61
    • /
    • 2010
  • This paper presents failure analysis on weld-joint of the waterwall tubes in USC boilers. Visual inspections were performed to find out the characteristics of the fracture. Additionally both microscopic characteristics and hardness test were carried out on failed tube samples. Failures seem to happen mainly because the welding process such as preheating and PWHT(post-weld heat treatment) was not conducted strictly. Thus, this paper has the purpose to describe the main cause of the poor welding process and to explain how to prevent similar failures in those weld-joints.

  • PDF

Corrosion Failure Analysis of the Convection Part of District Heating Peak Load Boiler (지역난방 첨두부하보일러 대류부 부식 파손 분석)

  • Kim, Youngsu;Chae, Hobyung;Hong, Minki;Song, Min Ji;Cho, Jeongmin;Kim, Woo Cheol;Ha, Tae Baek;Lee, Soo Yeol
    • Corrosion Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.55-60
    • /
    • 2019
  • Corrosion failure in the convection part of peak load boiler (PLB) of the district heating system led to water leakage. Herein, Internal Rotary Inspection System (IRIS) inspection was employed to examine wall thinning and the cause of leakage in the flue tube. The corrosive products of the turbulator and tube were investigated using scanning electron microscope combined with energy dispersive spectroscopy, X-ray diffraction, and inductively coupled plasma (ICP). Majority of the serious corrosion damage was observed near the turbulator located in the upper flue tube. ICP analysis of the boiler water revealed oxide formation of sodium chloride in the lower end part of the flue tube. A cross-sectional view of the turbulator revealed the presence of double-layers of the oxide film, indicating environmental change during operation associated with water leakage. The outer surface of the turbulator consisted of the acid oxides such as $NO_x$ and $SO_x$ along with sodium and chloride ions. Dew-point corrosion is hypothesized as the main cause for the formation of acid oxides in the region of contact of the flue tube and the turbulator.

Comparative Reliability of Nondestructive Testing for Weld: Water Wall Tube in Thermal Power Plant Boiler Case Study (용접부 비파괴 검사의 신뢰성 비교: 화력 발전소의 보일러 수냉벽 배관 사례연구)

  • Choi, Chang Deok;Lim, Ik Sung
    • Journal of Applied Reliability
    • /
    • v.18 no.3
    • /
    • pp.240-249
    • /
    • 2018
  • Purpose: The purpose of this research is to find which technique, between the PAUT (Phased array ultrasonic test) that has been used widely in practice and RT (Radiographic test) that was used widely in the past, has the higher reliability as a non-destructive testing of welding points in water wall tubes. Methods: To evaluated the reliability of non-destructive testing, eleven test pieces that were fabricated intentionally, which have the most frequently occurred defect types in water wall tubes and then both the PAUT and RT were performed on those eleven test pieces to compare their reliability. Results: The differences of type of defect, length are occurred due to the characteristics of nondestructive testing. The RT could not detect the lack of fusion defect type in specimen #4 and #8 while PAUT could not detect the lateral crack and 1 mm size small porosity in specimen #11. Conclusion: It is concluded that applying both the RT and PAUT result the best reliability rather than applying only one test method, if it is possible, in nondestructive testing of weld water wall tube in thermal power plant boiler case.

On-Site Corrosion Behavior of Water-Treated Boiler Tube Steel

  • Seo, Junghwa;Choi, Mihwa;He, Yinsheng;Yang, Seok-Ran;Lee, Je-Hyun;Shin, Keesam
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.177-182
    • /
    • 2015
  • The boiler tubes of X20CrMoV12.1 used in fossil-fired power plants were obtained and analyzed for the effect of water treatment on the steam corrosion-induced oxide scale in an effort to better understand the oxide formation mechanism, as well as pertinent method of maintenance and lifetime extension. The specimens were analyzed using various microscopy and microanalysis techniques, with focuses on the effect of water treatment on the characters of scale. X-ray diffraction analysis showed that the scales of specimens were composed of hematite ($Fe_2O_3$), magnetite ($Fe_3O_4$), and chromite ($FeCr_2O_4$). Electron backscatter diffraction analysis showed that the oxides were present in the following order on the matrix: outer $Fe_2O_3$, intermediate $Fe_3O_4$, and inner $FeCr_2O_4$. After all volatile treatment or oxygenated treatment, a dense protective $Fe_2O_3$ layer was formed on the $Fe_3O_4$ layer of the specimen, retarding further progression of corrosion.

Corrosion Behavior of Boiler Tube under Circulation Water Conditions in District Heating System (지역난방 시스템의 순환수에 따른 보일러 튜브의 부식 특성)

  • Hong, Minki;Cho, Jeongmin;Song, Min Ji;Kim, Woo Cheol;Ha, Tae Baek;Lee, Soo Yeol
    • Corrosion Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.287-291
    • /
    • 2018
  • In this study, corrosion behavior of a SA178-A alloy used in the boiler tube of a district heating system was investigated in different environments where it was exposed to pure water, district heating (DH) water, and filtered district heating (FDH) water. After the corrosion test, the surface morphology was examined for observation of the number of pitting sites and pitting area fraction, using a scanning electron microscope. The DH water and FDH water conditions resulted in a lower corrosion potential and pitting potential, and revealed a significantly higher corrosion rate than the pure water condition. The pitting sites in the DH water (pH 9.6) were approximately eighteen times larger than those in the pure water (pH 9.6). Compared to the DH water, the corrosion potential became more noble in the FDH water condition, where iron ions were reduced through filtration. However, the corrosion rate increased in the FDH water due to an increased concentration of chloride ions, which deteriorated the stability of passive film.

Comparison of Combustion Characteristics With and Without Water Tube Simulating Heat Exchanger in Two Sections Porous Media Burner (2단 다공성 매체버너에서 열교환기를 모사한 수관 유무에 따른 연소 특성 비교)

  • Lee, Hui-Do;Kim, Jae-Hyeon;Lee, Kee-Man
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.5
    • /
    • pp.24-34
    • /
    • 2019
  • In this study, the experimental studies were conducted to analyzing characteristics of combustion and flame stabilizing according to with and without water tube in boiler. The burner has consisted of SiC foam where has the location of submerged flame between a ceramic board acting as flash-back arrestor. Porous burner is also insulated to minimize heat loss in the radial direction. In the condition of fixed equivalence ratio, the flame mode was divided into three stability zones by the flow rate. The main factor for blow-off and flash-back depends on mixture flow rate. Consequently, the case of burner with water-tube has higher NOx emissions than without case. This result explains that the presence of water-tube makes the heat loss resistant to ambient temperature with increasing of NOx. This tendency was proved by predicting the relationship between O2 emission and NO production rate, and by analysing temperature profiles.

A Study on Syngas Co-Combustion Characteristics in a 0.7 MWth Water-Tube Boiler with Single Heavy Oil Burner (중유 싱글 버너 수관식 보일러에서의 합성가스 혼합연소 특성 연구)

  • Choi, Sin-Yeong;Yang, Dong-Jin;Bang, Byoung-Yeol;Yang, Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.452-459
    • /
    • 2010
  • This study is aimed to investigate changes of combustion characteristics and heat efficiency when syngas from gasification process using low-rank fuel such as waste and/or biomass is applied partially to an industrial boiler. An experimental study on syngas co-combustion was performed in a 0.7 MW (1 ton steam/hr) water tube boiler using heavy oil as a main fuel. Three kinds of syngas were used as an alternative fuel: mixture gas of pure carbon monoxide and hydrogen, syngas of low calorific value generated from an air-blown gasification process, and syngas of high calorific value produced from an oxygen-blown gasification process. Effects of co-combustion ratio (0~20%) for each syngas on flue gas composition were investigated through syngas injection through the nozzles installed in the side wall of the boiler and measuring $O_2$, $CO_2$, CO and NOx concentrations in the flue gas. When syngas co-combustion was applied, injected syngas was observed to be burned completely and NOx concentration was decreased because nitrogen-containing-heavy oil was partially replaced by the syngas. However, heat efficiency of the boiler was observed to be decreased due to inert compounds in the syngas and the more significant decrease was found when syngas of lower calorific value was used. However, the decrease of the efficiency was under 10% of the heat replacement by syngas.

Evaluation on Performance of Hybrid Heating System with Solar Collector of Thermosyphon Tube Type (열사이폰관형 태양열집열기를 주열원으로 하는 하이브리드 난방시스템 성능 평가)

  • Chun, Tae-Kyu;Yang, Young-Joon
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.356-361
    • /
    • 2012
  • Recently, even though the researches on renewable energy like geothermal, wind, solar energy have been performed widely, its use-rate in total energy is still low. This study was carried out to investigate the performance of hybrid heating system, which consisted of solar collector of thermosyphon tube type and X-L pipe boiler. Especially, new type of solar collector was tried and compared with double tube type and, futhermore, performance and safety on X-L pipe boiler were investigated. As the results, efficiency of solar collector of thermosyphon tube type was higher 20.7% than that of double tube type, mainly due to its structural characteristics. It was also confirmed that temperature of special heat medium used X-L pipe boiler rose up about 20% rapidly in comparison with that of pure water.

Improvement of Boiler Performance on 550 MW Coal Fired Thermal Power Plant via Baffle Plates (다공판 연소가스 유량제어를 통한 석탄화력발전소 보일러 성능 개선)

  • Kim, Chi Ho;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.17 no.1
    • /
    • pp.38-49
    • /
    • 2021
  • In order to increase power plant efficiency, the steam temperature was increased to 610 ℃ which deteriorates the durability of the boiler tube and as the use of low-calorie coal increases the post combustion and delayed combustion phenomenon, the overheating of the final reheater and the tube rupture are becoming frequent. In order to prevent overheating of the final reheater, desuperheater water injection was increased, leading to a decrease in boiler efficiency. In this study install a baffle plate at the back of some overheated tube groups, thereby reduce the temperature of the tube by reducing the amount of combustion gas, and the reduced combustion gas moves to an adjacent place to increase the temperature of other tubes. As a result of the study, the temperature deviation between tubes decreased 1.5. And the heat-reducing injection amount was reduced to 6,929 kg/h and the maximum tube temperature was reduced to 623.4℃ which is 6.6℃ more below than the control standard of 630℃.