• 제목/요약/키워드: Water Treatment Technology

검색결과 2,994건 처리시간 0.03초

난분해성 산업폐수 처리를 위한 고도산화기술 (Advanced oxidation technologies for the treatment of nonbiodegradable industrial wastewater)

  • 김민식;이기명;이창하
    • 상하수도학회지
    • /
    • 제34권6호
    • /
    • pp.445-462
    • /
    • 2020
  • Industrial wastewater often contains a number of recalcitrant organic contaminants. These contaminants are hardly degradable by biological wastewater treatment processes, which requires a more powerful treatment method based on chemical oxidation. Advanced oxidation technology (AOT) has been extensively studied for the treatment of nonbiodegradable organics in water and wastewater. Among different AOTs developed up to date, ozonation and the Fenton process are the representative technologies that widely used in the field. Based on the traditional ozonation and the Fenton process, several modified processes have been also developed to accelerate the production of reactive radicals. This article reviews the chemistry of ozonation and the Fenton process as well as the cases of application of these two AOTs to industrial wastewater treatment. In addition, research needs to improve the cost efficiency of ozonation and the Fenton process were discussed.

Functional Characteristics of Nakdong Technique Treated on Paulownia Wood Surface

  • LEE, Chaehoon;JUNG, Hwanhee;CHUNG, Yongjae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제49권1호
    • /
    • pp.82-92
    • /
    • 2021
  • Nakdong technique is an unfamiliar scorching treatment using an iron heated in a kiln over 1000℃. It is a typical convention in Asian countries to treat Nakdong on the surface of paulownia species. The scorching treatment changes the surface characteristics as well as the color of the wood. This study focused on the effects of functional features such as water resistance, anti-mold, anti-termite, and sound improvement because this treatment is usually used on paulownia wood-bodied musical instruments surface. It took 28'57" for Nakdong-iron treated surface to absorb a droplet of water. The absorbance time of iron treated surface was longer than that of torch treated one. There was no noticeable effect on the anti-mold test. On the anti-termite test, there was nearly 3% more mean mass loss on the torch samples than controlled and iron treated ones. In examining the sound radiation coefficient before and after Nakdong treatment, the Nakdong-iron treated surface showed an increase in the average value of 1.2 m4/kg s, which means that it has sound quality improvement. Through this research, the Nakdong technique results are expected to be used as basic-data for further research and give a practical idea for using the traditional treatment method on the wood surface.

폐수특성 및 처리기술에 근거한 산업폐수 배출허용기준 설정체계 연구 (Establishment of Effluent Limitation based on Wastewater Characteristics and Treatment Technology)

  • 권오상;정진영;허태영;전항배;이연희;박상민
    • 한국물환경학회지
    • /
    • 제28권6호
    • /
    • pp.804-812
    • /
    • 2012
  • This study contemplated domestic and other country's effluent limitation standards and suggested a methodology to establish technology-base limitation value. Current effluent limitation regulates industrial point sources discriminated by discharge flow rate and by regional distinction in Korea. Discharged $BOD_5$ load from large-scale plants(flow rate above $2,000\;m^3/day)$ exceeds 50% of overall industrial wastewater, which present rationale for discrimination based on plant size. However, regional distinction and pollutant- specific regulation might be insufficient to meet practical effectiveness of wastewater management policy, due to the nearly same limitation. Water quality data and treatment methods were investigated in hospital industry. And their distribution of effluent $BOD_5$ concentrations was statistically analyzed to suggest limitation value. Effluent $BOD_5$ concentrations showed lognormal distribution and $95^{th}$ percentile was corresponded to 87.9 mg/L, which could be suggested as tentative effluent limitation in hospital industry. The $95^{th}$ percentile of log-transformed distribution showed similar value of 86.5 mg/L. This study demonstrated reasonable methodology for establishing effluent limitation reflecting wastewater characteristic and treatment technology in separately categorized industry.

공동주택 지하저수조 내 침전된 부유성 고형물의 발생원인 및 제어방안 (Investigating the Causes and Control Measures for Precipitated Suspended Solids in the Underground Reservoir Tank in an Apartment)

  • 장준영;김주원;김기팔;신현상;임병란
    • 한국물환경학회지
    • /
    • 제39권2호
    • /
    • pp.153-161
    • /
    • 2023
  • The reservoir tank in an apartment is crucial for maintaining the quality of drinking water after it has undergone treatment. Investigating the water quality and potential contaminants in the reservoir tank is essential to ensure the safety of the drinking water. This study examined the water quality and precipitated suspended solids that accumulate at the bottom of the reservoir tanks in four apartments located in Gyeonggi province. As a result of the water quality investigation, turbidity increased proportionally to the distance from the water treatment plant (WTP) to the household. Heavy metals were also detected in the reservoir tank inlet but not in the water supplied from the WTP. The precipitated suspended solids (SS) in the reservoir tank contain high levels of heavy metals and total organic carbon (TOC). The precipitated SS mainly consists of Al, Mn, and Fe, which are expected to be a combination with turbidity-inducing substances. The X-ray diffraction (XRD) analysis revealed the presence of γ-FeO(OH), MnO2, and β-Fe2O3 in the SS. Additionally, F-EEM analysis indicates that the dissolved organic matter in the SS is mainly derived from a natural water source and microorganism activities, including metal-oxidizing bacteria and biofilms that can absorb metal ions. Based on these findings, several countermeasures can be taken to prevent the inflow of SS into the household, including regularly cleaning the reservoir tank, replacing or cleaning old pipes in the water supply system, and implementing monitoring and filtering systems to manage the SS.

갈대(Phragmites australls)수초를 적용한 바이오필터에서의 하수처리시설 악취저감기술 (Odor Reduction Technology in Sewage Treatment Facility Using Biofilter with Reed Grass(Phragmites australls))

  • 정진도;김규열
    • 상하수도학회지
    • /
    • 제27권3호
    • /
    • pp.373-382
    • /
    • 2013
  • In this study, a biological odor treatment system was proposed to remove odor(foul smell) materials causing several problems in the closed sewage treatment plant. This odor treatment system was composed of a two-step biofilter system in one reactor. The two-step biofilter reactor was constructed with natural purification layer in upper part and artificial purification layer in lower part. The reed grasses of water purification plants were planted in the surface area and mixed porous ceramic media were filled with the lower part of biofilter reactor. By using the above experimental apparatus, the ammonia gas removal efficiency was attained to 98.3 % and the hydrogen sulfide gas removal efficiency was appeared more than 97.7 % which shows more effective than the conventional odor removal process.

Effect of fibre loading and treatment on porosity and water absorption correlated with tensile behaviour of oil palm empty fruit bunch fibre reinforced composites

  • Anyakora, Anthony N.;Abubakre, Oladiran K.;Mudiare, Edeki;Suleiman, MAT
    • Advances in materials Research
    • /
    • 제6권4호
    • /
    • pp.329-341
    • /
    • 2017
  • The challenge of replacing conventional plastics with biodegradable composite materials has attracted much attention in product design, particularly in the tensile-related areas of application. In this study, fibres extracted from oil palm empty fruit bunch (EFB) were treated and utilized in reinforcing polyester matrix by hand lay-up technique. The effect of fibre loading and combined influence of alkali and silane treatments on porosity and water absorption parameters, and its correlation with the tensile behaviour of composites was analyzed. The results showed that tensile strength decreased whilst modulus of elasticity, water absorption and porosity parameters increased with increasing fibre loading. The composites of treated oil palm EFB fibre exhibited improved values of 2.47 MPa to 3.78 MPa for tensile strength; 1.75 MPa to 2.04 MPa for modulus of elasticity; 3.43% to 1.68% for porosity and 3.51% to 3.12% for water absorption at respective 10 wt.% fibre loadings. A correlation between porosity and water absorption with tensile behavior of composites of oil palm EFB fibre and positive effect of fibre treatment was established, which clearly demonstrate a connection between processing and physical properties with tensile behavior of fibre composites. Accordingly, a further exploitation of economic significance of oil palm EFB fibres composites in areas of low-to-medium tensile strength application is inferred.

COD removal from industrial wastewater plants using reverse osmosis membrane

  • Madaeni, S.S.;Samieirad, S.
    • Membrane and Water Treatment
    • /
    • 제1권4호
    • /
    • pp.273-282
    • /
    • 2010
  • Treatment and reuse of industrial wastewater is becoming a major goal due to water scarcity. This may be carried out using membrane separation technology in general and reverse osmosis (RO) in particular. In the current study, polyamide (FT-30) membrane was employed for treatment of wastewater obtained from Faraman industrial zone based in Kermanshah (Iran). The effects of operating conditions such as transmembrane pressure, cross flow velocity, temperature and time on water flux and rejection of impurities including COD by the membrane were elucidated. The aim was an improvement in membrane performance. The results indicate that most of the chemical substances are removed from the wastewater. In particular COD removal was increased from 64 to around 100% as temperature increased from 15 to $45^{\circ}C$. The complete COD removal was obtained at transmembrane pressure of 20 bars and cross flow velocity of 1.5 m/s. The treated wastewater may be reused for various applications including makeup water for cooling towers.

석유화학계 기초화합물 제조시설과 합성수지 및 기타 플라스틱물질 제조시설의 폐수처리시설 BAT평가 (Assessment of Best Available Technology of Wastewater Treatment Facilities in Petrochemical Basic Compound Manufacturing and Plastics and Synthetic Resins Manufacturing)

  • 김영노;임병진;권오상
    • 한국물환경학회지
    • /
    • 제22권1호
    • /
    • pp.59-65
    • /
    • 2006
  • The effluent limitations for individual industry based on the best available technology economically achievable (BAT) have been required to achieve effective regulation. BAT assessment criteria that are suitable for the circumstances of Korean industry were developed in the previous study. The criteria were applied to determine the BAT for petrochemical basic compound manufacturing (PBCM) and plastics and synthetic resins manufacturing (PSRM) industry. Wastewater discharged from the each category contains high concentration of COD and toluene. Eighteen sites were surveyed and wastewater qualities were analyzed. Six and two different technologies were applied to the PBCM and PSRM industry for the end-of-pipe treatment process, respectively. The technology candidates were evaluated in terms of environmental impacts, economically achievability, treatment performance and economical reasonability. As the result, the technology options: typical activated-sludge process + sand filtration + activated carbon adsorption (PBCM) and wet oxidation + chemical precipitation + typical activated-sludge process + chemical precipitation (PSRM) were selected as the BAT for each industry.

Evaluation of flux stabilisation using Bio-UF membrane filter on KZN Rivers, South Africa

  • Thoola, Maipato I.;Rathilal, Sudesh;Pillay, Lingam V.
    • Membrane and Water Treatment
    • /
    • 제7권4호
    • /
    • pp.313-325
    • /
    • 2016
  • South Africa recognises piped water as the main source of safe drinking water supply. Remote areas do not have access to this resource and they rely solely on surface water for survival, which exposes them to waterborne diseases. Interim point of use solutions are not practiced due to their laboriousness and alteration of the taste. Bio-ultra low pressure driven membrane system has been noted to be able to produce stable fluxes after one week of operation; however, there is limited literature on South African waters. This study was conducted on three rivers namely; Umgeni, Umbilo and Tugela. Three laboratory systems were setup to evaluate the performance of the technology in terms of producing stable fluxes and water that is compliant with the WHO 2008 drinking water guideline with regards to turbidity, total coliforms and E.coli. The obtained flux rate trends were similar to those noted in literature where they are referred to as stable fluxes. However, when further comparing the obtained fluxes to the normal dead-end filtration curve, it was noted that both the Umbilo and Tugela Rivers responded similarly to a normal dead-end filtration curve. The Umgeni River was noted to produce flux rates which were higher than those obtainable under normal dead-end. It can be concluded that there was no stabilisation of flux noted. However, feed water with low E.coli and turbidity concentrations enhances the flux rates. The technology was noted to produce water of less than 1 NTU and 100% removal efficiency for E.coli and total coliforms.

하수처리시설에서 인 고도처리를 위한 일체형 침전부상공정(SeDAF)의 응집제 주입농도 자동제어기법 검토 (Automatic control of coagulant dosage on the sedimentation and dissolved air flotation(SeDAF) process for enhanced phosphorus removal in sewage treatment facilities)

  • 장여주;정진홍;김원재
    • 상하수도학회지
    • /
    • 제34권6호
    • /
    • pp.411-423
    • /
    • 2020
  • To remove phosphorus from the effluent of public wastewater treatment facilities, hundreds of enhanced phosphorus treatment processes have been introduced nationwide. However, these processes have a few problems including excessive maintenance cost and sludge production caused by inappropriate coagulant injection. Therefore, the optimal decision of coagulant dosage and automatic control of coagulant injection are essential. To overcome the drawbacks of conventional phosphorus removal processes, the integrated sedimentation and dissolved air flotation(SeDAF) process has been developed and a demonstration plant(capacity: 100 ㎥/d) has also been installed. In this study, various jar-tests(sedimentation and / or sedimentation·flotation) and multiple regression analyses have been performed. Particularly, we have highlighted the decision-making algorithms of optimal coagulant dosage to improve the applicability of the SeDAF process. As a result, the sedimentation jar-test could be a simple and reliable method for the decision of appropriate coagulant dosage in field condition of the SeDAF process. And, we have found that the SeDAF process can save 30 - 40% of coagulant dosage compared with conventional sedimentation processes to achieve total phosphorus (T-P) concentration below 0.2 mg/L of treated water, and it can also reduce same portion of sludge production.