DOI QR코드

DOI QR Code

Investigating the Causes and Control Measures for Precipitated Suspended Solids in the Underground Reservoir Tank in an Apartment

공동주택 지하저수조 내 침전된 부유성 고형물의 발생원인 및 제어방안

  • JunYoung Jang (Department of Environment Engineering, Seoul National University of Science and Technology) ;
  • JooWon Kim (Department of Environment Engineering, Seoul National University of Science and Technology) ;
  • KiPal Kim (K-1ecotech Co, Ltd) ;
  • HyunSang Shin (Department of Environment Engineering, Seoul National University of Science and Technology) ;
  • ByungRan Lim (Department of Environment Engineering, Seoul National University of Science and Technology)
  • 장준영 (서울과학기술대학교 환경공학과) ;
  • 김주원 (서울과학기술대학교 환경공학과) ;
  • 김기팔 ((주)케이원에코텍) ;
  • 신현상 (서울과학기술대학교 환경공학과) ;
  • 임병란 (서울과학기술대학교 환경공학과)
  • Received : 2023.01.05
  • Accepted : 2023.03.10
  • Published : 2023.03.30

Abstract

The reservoir tank in an apartment is crucial for maintaining the quality of drinking water after it has undergone treatment. Investigating the water quality and potential contaminants in the reservoir tank is essential to ensure the safety of the drinking water. This study examined the water quality and precipitated suspended solids that accumulate at the bottom of the reservoir tanks in four apartments located in Gyeonggi province. As a result of the water quality investigation, turbidity increased proportionally to the distance from the water treatment plant (WTP) to the household. Heavy metals were also detected in the reservoir tank inlet but not in the water supplied from the WTP. The precipitated suspended solids (SS) in the reservoir tank contain high levels of heavy metals and total organic carbon (TOC). The precipitated SS mainly consists of Al, Mn, and Fe, which are expected to be a combination with turbidity-inducing substances. The X-ray diffraction (XRD) analysis revealed the presence of γ-FeO(OH), MnO2, and β-Fe2O3 in the SS. Additionally, F-EEM analysis indicates that the dissolved organic matter in the SS is mainly derived from a natural water source and microorganism activities, including metal-oxidizing bacteria and biofilms that can absorb metal ions. Based on these findings, several countermeasures can be taken to prevent the inflow of SS into the household, including regularly cleaning the reservoir tank, replacing or cleaning old pipes in the water supply system, and implementing monitoring and filtering systems to manage the SS.

Keywords

Acknowledgement

This study was carried out with the support of the Korea Research Foundation's original technology development project (2020M3E9A1113438) and the fundamental research project (NRF-2020R1A6A1A03042742).

References

  1. Abokifa, A. A., Yang, Y. J., Lo, C. S., and Biswas, P. (2016). Water quality modeling in the dead end sections of drinking water distribution networks, Water Research, 89, 107-117. https://doi.org/10.1016/j.watres.2015.11.025
  2. Al-Bahry, S. N., Elshafie, A. E., Victor, R., Mahmoud, I. Y., and Al-Hinai, J. A. (2011). Opportunistic pathogens relative to physicochemical factors in water storage tanks, Journal of Water and Health, 9(2), 382-393. https://doi.org/10.2166/wh.2011.054
  3. Alvarez-Bastida, C., Martinez-Miranda, V., Vazquez-Mejia, G., Solache-Rios, M., de Oca, G. F. M., and Trujillo-Flores, E. (2013). The corrosive nature of manganese in drinking water, Science of the Total Environment, 447, 10-16. https://doi.org/10.1016/j.scitotenv.2013.01.005
  4. Baghoth, S. A., Sharma, S. K., and Amy, G. L. (2011). Tracking natural organic matter (NOM) in a drinking water treatment plant using fluorescence excitation-emission matrices and PARAFAC, Water Research, 45(2), 797-809. https://doi.org/10.1016/j.watres.2010.09.005
  5. Chen, L., Jia, R. B., and Li, L. (2013). Bacterial community of iron tubercles from a drinking water distribution system and its occurrence in stagnant tap water, Environmental Science: Processes and Impacts, 15(7), 1332-1340. https://doi.org/10.1039/c3em00171g
  6. Cook, D. M., Husband, P. S., and Boxall, J. B. (2016). Operational management of trunk main discolouration risk, Urban Water Journal, 13(4), 382-395. https://doi.org/10.1080/1573062X.2014.993994
  7. Cotruvo, J. A. (2017). 2017 WHO guidelines for drinking water quality: First addendum to the fourth edition, Journal American Water Works Association, 109(7), 44-51. https://doi.org/10.5942/jawwa.2017.109.0087
  8. Du, E., Cao, P. R., Sun, Y., Gao, N. Y., and Wang, L. P. (2012). Application of fluorescence excitation-emission matrices and parafac analysis for indicating the organic matter removal from micro-polluted raw water in water treatment plant, Fresenius Environmental Bulletin, 21, 4030-4039.
  9. Fellman, J. B., Hood, E., and Spencer, R. G. (2010). Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review, Limnology and Oceanography, 55(6), 2452-2462. https://doi.org/10.4319/lo.2010.55.6.2452
  10. Fish, K. E., Osborn, A. M., and Boxall, J. (2016). Characterising and understanding the impact of microbial biofilms and the extracellular polymeric substance (EPS) matrix in drinking water distribution systems, Environmental Science: Water Research and Technology, 2(4), 614-630. https://doi.org/10.1039/C6EW00039H
  11. Gerke, T. L., Little, B. J., and Maynard, J. B. (2016). Manganese deposition in drinking water distribution systems, Science of the Total Environment, 541, 184-193. https://doi.org/10.1016/j.scitotenv.2015.09.054
  12. Ginige, M. P., Wylie, J., and Plumb, J. (2011). Influence of biofilms on iron and manganese deposition in drinking water distribution systems, Biofouling, 27(2), 151-163. https://doi.org/10.1080/08927014.2010.547576
  13. Gonzalez, S., Lopez-Roldan, R., and Cortina, J. L. (2013). Presence of metals in drinking water distribution networks due to pipe material leaching: A review, Toxicological and Environmental Chemistry, 95(6), 870-889. https://doi.org/10.1080/02772248.2013.840372
  14. Gschwandtner, A., Jang, C., and McManus, R. (2020). Improving drinking water quality in South Korea: A choice experiment with hypothetical bias treatments, Water, 12(9), 2569.
  15. Ho, C. K., Christian, J. M., Ching, E. J., Slavin, J., Ortega, J., Murray, R., and Rossman, L. A. (2016). Sediment resuspension and transport in water distribution storage tanks, Journal American Water Works Association, 108(6), E349-E361. https://doi.org/10.5942/jawwa.2016.108.0077
  16. Jamshaid, M., Khan, A. A., Ahmed, K., and Saleem, M. (2018). Heavy metal in drinking water its effect on human health and its treatment techniques-a review, International Journal of Biosciences, 12(4), 223-240. https://doi.org/10.12692/ijb/12.4.223-240
  17. Jang, J. Y., Kim, J. W., Hwang Y. H., Kim, K. P., Shin H. S., and Lim, B. R. (2022). Water quality variation and corrosion index characteristics of the underground reservoir in an apartment, Journal of Korean Society on Water Environment, 38(6), 275-281. [Korean Literature]
  18. Kim, D. H., Lee, D. J., Hwang, J. S., and Choi, D. Y. (2013). Characteristic analysis and effect of particulate material in drinking water distribution networks, Journal of Korean Society of Environmental Engineers, 35(5), 312-320. [Korean Literature] https://doi.org/10.4491/KSEE.2013.35.5.312
  19. Kohl, P. M. and Medlar, S. J. (2006). Occurrence of manganese in drinking water and manganese control, American Water Works Association.
  20. Lavonen, E. E., Kothawala, D. N., Tranvik, L. J., Gonsior, M., Schmitt-Kopplin, P., and Kohler, S. J. (2015). Tracking changes in the optical properties and molecular composition of dissolved organic matter during drinking water production, Water Research, 85, 286-294. https://doi.org/10.1016/j.watres.2015.08.024
  21. Lee, H. S., Hur, J., Lee, M. H., Brogi, S. R., Kim, T. W., and Shin, H. S. (2019). Photochemical release of dissolved organic matter from particulate organic matter: Spectroscopic characteristics and disinfection by-product formation potential, Chemosphere, 235, 586-595. https://doi.org/10.1016/j.chemosphere.2019.06.127
  22. Lei, I. L., Ng, D. Q., Sable, S. S., and Lin, Y. P. (2018). Evaluation of lead release potential of new premise plumbing materials, Environmental Science and Pollution Research, 25(28), 27971-27981. https://doi.org/10.1007/s11356-018-2816-2
  23. Li, G., Ma, X., Chen, R., Yu, Y., Tao, H., and Shi, B. (2019). Field studies of manganese deposition and release in drinking water distribution systems: Insight into deposit control, Water Research, 163, 114897.
  24. Liu, S., Gunawan, C., Barraud, N., Rice, S. A., Harry, E. J., and Amal, R. (2016). Understanding, monitoring, and controlling biofilm growth in drinking water distribution systems, Environmental Science and Technology, 50(17), 8954-8976. https://doi.org/10.1021/acs.est.6b00835
  25. Lyon, B. A., Cory, R. M., and Weinberg, H. S. (2014). Changes in dissolved organic matter fluorescence and disinfection byproduct formation from UV and subsequent chlorination/ chloramination, Journal of Hazardous Materials, 264, 411-419. https://doi.org/10.1016/j.jhazmat.2013.10.065
  26. Ministry of Environment (ME). (2021). Report on the results of the survey on tap water consumption in 2021, https://me.go.kr/home/web/policy_data/read.do?pagerOffset=40&maxPageItems=10&maxIndexPages=10&searchKey=&searchValue=&menuId=10264&orgCd=&condition.toInpYmd=null&condition.code=A5&condition.fromInpYmd=null&condition.deleteYn=N&condition.deptNm=null&seq=7776 (accessed August, 2022).
  27. Ministry of Environment (ME). (2022). Statistics for water supply in 2021, https://me.go.kr/home/web/policy_data/read.do?pagerOffset=0&maxPageItems=10&maxIndexPages=10&searchKey=&searchValue=&menuId=10264&orgCd=&condition.toInpYmd=null&condition.code=A5&condition.fromInpYmd=null&condition.deleteYn=N&condition.deptNm=null&seq=7996 (accessed February, 2023).
  28. Mun, H. S., Seok, K. S., Chae, M. H., Kim, J. H., Hong, S. H., Lee, J. J., Yoon, J. H., Cho, S. H., Jeon, P. Y., Yoon, J. Y., Kil, G. B., Tae, E. N., Yoon, G. S., Choe, J.Y., Kim, W. S., Bae, S. Y., and Han S. R. (2020). Investigation on the origin of organic pollutants in the upstream of Miho-stream and management strategies for the corresponding small watersheds (I), NIER-RP2020-29, Geum-River Environment Research Center, 7-8. [Korean Literature]
  29. Murphy, K. R., Stedmon, C. A., Waite, T. D., and Ruiz, G. M. (2008). Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy, Marine Chemistry, 108(1-2), 40-58. https://doi.org/10.1016/j.marchem.2007.10.003
  30. Rahman, M. S. and Gagnon, G. A. (2014). Bench-scale evaluation of drinking water treatment parameters on iron particles and water quality, Water Research, 48, 137-147. https://doi.org/10.1016/j.watres.2013.09.018
  31. Shamsaei, H., Jaafar, O., and Basri, N. E. A. (2013). Effects residence time to water quality in large water distribution systems, Engineering, 05, 449-457. https://doi.org/10.4236/eng.2013.54054
  32. Simard, A., Pelletier, G., and Rodriguez, M. (2011). Water residence time in a distribution system and its impact on disinfectant residuals and trihalomethanes, Journal of Water Supply: Research and Technology-AQUA, 60(6), 375-390. https://doi.org/10.2166/aqua.2011.019
  33. Slavik, I., Oliveira, K. R., Cheung, P. B., and Uhl, W. (2020). Water quality aspects related to domestic drinking water storage tanks and consideration in current standards and guidelines throughout the world-A review, Journal of Water and Health, 18(4), 439-463. https://doi.org/10.2166/wh.2020.052
  34. Solomon, C. T., Jones, S. E., Weidel, B. C., Buffam, I., Fork, M. L., Karlsson, J., and Saros, J. E. (2015). Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: Current knowledge and future challenges, Ecosystems, 18(3), 376-389. https://doi.org/10.1007/s10021-015-9848-y
  35. Stedmon, C. A. and Bro, R. (2008). Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial, Limnology and Oceanography: Methods, 6(11), 572-579. https://doi.org/10.4319/lom.2008.6.572
  36. Stedmon, C. A. and Markager, S. (2005). Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis, Limnology and oceanography, 50(2), 686-697. https://doi.org/10.4319/lo.2005.50.2.0686
  37. Tanaka, K., Tani, Y., Takahashi, Y., Tanimizu, M., Suzuki, Y., Kozai, N., and Ohnuki, T. (2010). A specific Ce oxidation process during sorption of rare earth elements on biogenic Mn oxide produced by Acremonium sp. strain KR21-2, Geochimica et Cosmochimica Acta, 74(19), 5463-5477. https://doi.org/10.1016/j.gca.2010.07.010
  38. Torrey, J. D. (2013). Effect of chlorine vs. chloramine treatment techniques on materials degradation in reclamation infrastructure, Technical Memorandum No. MERL-2013-57, US Department of the Interior, Bureau of Reclamation, Colorado, 3-7.
  39. Trueman, B. F. and Gagnon, G. A. (2016). Understanding the role of particulate iron in lead release to drinking water, Environmental Science and Technology, 50(17), 9053-9060. https://doi.org/10.1021/acs.est.6b01153
  40. Woo, D. S., Park, H. B., Chae, S. K., Yum, K. T., and Lee. H. S. (2014). A study on the variation of heavy metals in water distribution pipeline systems, Joural of Korean Society of Water Science and Technology, 22(5), 85-91. [Korean Literature]
  41. Xu, X., Kang, J., Shen, J., Zhao, S., Wang, B., Zhang, X., and Chen, Z. (2021). EEM-PARAFAC characterization of dissolved organic matter and its relationship with disinfection by-products formation potential in drinking water sources of northeastern China, Science of The Total Environment, 774, 145297.
  42. Yang, L., Hur, J., and Zhuang, W. (2015). Occurrence and behaviors of fluorescence EEM-PARAFAC components in drinking water and wastewater treatment systems and their applications: A review, Environmental Science and Pollution Research, 22(9), 6500-6510. https://doi.org/10.1007/s11356-015-4214-3
  43. Zhang, X., Xiao, K., Dong, C., Wu, J., Li, X., and Huang, Y. (2011). In situ Raman spectroscopy study of corrosion products on the surface of carbon steel in solution containing Cl- and SO42-, Engineering Failure Analysis, 18(8), 1981-1989. https://doi.org/10.1016/j.engfailanal.2011.03.007
  44. Zhang, Y., and Lin, Y. P. (2015). Leaching of lead from new unplasticized polyvinyl chloride (uPVC) pipes into drinking water, Environmental Science and Pollution Research, 22(11), 8405-8411. https://doi.org/10.1007/s11356-014-3999-9
  45. Zhang, Y., Shi, B., Zhao, Y., Yan, M., Lytle, D. A., and Wang, D. (2016). Deposition behavior of residual aluminum in drinking water distribution system: Effect of aluminum speciation, Journal of Environmental Sciences, 42, 142-151. https://doi.org/10.1016/j.jes.2015.05.010