• Title/Summary/Keyword: Water System Dynamics

Search Result 395, Processing Time 0.028 seconds

Preliminary Molecular Dynamics Simulations of the OSS2 Model for the Solvated Proton in Water

  • Lee, Song Hui
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.847-849
    • /
    • 2001
  • The OSS2(Ojame-Shavitt-Singer 2)[L. Ojame et al., J. Chem. Phys. 109, 5547 (1998)] model as a dissociable water model is examined in order to study the dynamics of H+ in water. MD simulations for 216 water system, 215 water + H+ ion system, and 215 water + OH- ion system using the OSS2 model at 298.15 K with the use of Ewald summation are carried out. The calculated O-H radial distribution functions for these systems are essentially the same and are in very good agreement with that obtained by Ojame.

Climate Resilience Assessment of Agricultural Water System Using System Dynamics Model (시스템다이내믹스 모델을 이용한 농업용수 시스템의 기후 복원력 평가)

  • Choi, Eunhyuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.4
    • /
    • pp.65-86
    • /
    • 2021
  • This study aims at testing a hypothesis that the resilience of agricultural water systems is characterized by trade-offs and synergies of effects from climate and socioeconomic change. To achieve this, an Agricultural Water System Climate Resilience Assessment (ACRA) framework is established to evaluate comprehensive resilience of an agricultural water system to the combined impacts of the climate and socioeconomic changes with a case study in South Korea. Understanding dynamic behaviors of the agricultural water systems under climate and socioeconomic drivers is not straightforward because the system structure includes complex interactions with multiple feedbacks across components in water and agriculture sectors and climate and socioeconomic factors, which has not been well addressed in the existing decision support models. No consideration of the complex interactions with feedbacks in a decision making process may lead to counterintuitive and untoward evaluation of the coupled impacts of the climate and socioeconomic changes on the system performance. In this regard, the ACRA framework employs a System Dynamics (SD) approach that has been widely used to understand dynamics of the complex systems with the feedback interactions. In the ACRA framework applied to the case study in South Korea, the SD model works along with HOMWRS simulation. The ACRA framework will help to explore resilience-based strategies with infrastructure investment and management options for agricultural water systems.

Dynamic Model of Water Electrolysis for Prediction of Dynamic Characteristics of Cooling System (냉각계통 동적 예측을 위한 수전해 시스템 동적 모사 모델)

  • YUN, SANGHYUN;YUN, JINYON;HWANG, GUNYONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • Water electrolysis technology, which generates hydrogen using renewable energy resources, has recently attracted great attention. Especially, the polymer electrolyte membrane water electrolysis system has several advantages over other water electrolysis technologies, such as high efficiency, low operating temperature, and optimal operating point. Since research that analyzes performance characteristics using test bench have high cost and long test time, however, model based approach is very important. Therefore, in this study, a system model for water electrolysis dynamics of a polymer electrolyte membrane was developed based on MATLAB/Simulink®. The water electrolysis system developed in this study can take into account the heat and mass transfer characteristics in the cell with the load variation. In particular, the performance of the system according to the stack temperature control can be analyzed and evaluated. As a result, the developed water electrolysis system can analyze water pump dynamics and hydrogen generation according to temperature dynamics by reflecting the dynamics of temperature.

Application of System Dynamics Methodology for Comprehensive Analysis of the Water Business System (수도시스템 사업성과의 통합적 분석을 위한 시스템 다이나믹스 방법론 적용)

  • Lee, Sangeun;Park, Hyeyeon;Park, Heekyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.1
    • /
    • pp.65-73
    • /
    • 2007
  • To consider business-based requirements beyond the existing roles of water supply, water utilities need enough methodology to integrate lots of related issues and to introduce effective decision-makings. On these grounds, this study modeled and simulated water business system using system dynamics approach. It is expected that formalised model can describe the actual system structurally and statistically, help utilities to predict their business performance and make decisions to solve chronic issues. Moreover, the case study of Y city gave political measures objectively and practically.

Climate change impact assessment of agricultural reservoir using system dynamics model: focus on Seongju reservoir

  • Choi, Eunhyuk
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.2
    • /
    • pp.311-331
    • /
    • 2021
  • Climate change with extreme hydrological events has become a significant concern for agricultural water systems. Climate change affects not only irrigation availability but also agricultural water requirement. In response, adaptation strategies with soft and hard options have been considered to mitigate the impacts from climate change. However, their implementation has become progressively challenging and complex due to the interconnected impacts of climate change with socio-economic change in agricultural circumstances, and this can generate more uncertainty and complexity in the adaptive management of the agricultural water systems. This study was carried out for the agricultural water supply system in Seongju dam watershed in Seonju-gun, Gyeongbuk in South Korea. The first step is to identify system disturbances. Climate variation and socio-economic components with historical and forecast data were investigated Then, as the second step, problematic trends of the critical performance were identified for the historical and future climate scenarios. As the third step, a system structure was built with a dynamic hypothesis (causal loop diagram) to understand Seongju water system features and interactions with multiple feedbacks across system components in water, agriculture, and socio-economic sectors related to the case study water system. Then, as the fourth step, a mathematical SD (system dynamics) model was developed based on the dynamic hypothesis, including sub-models related to dam reservoir, irrigation channel, irrigation demand, farming income, and labor force, and the fidelity of the SD model to the Seongju water system was checked.

A development of system dynamics model for water, energy, and food nexus (W-E-F nexus)

  • Wicaksono, Albert;Jeong, Gimoon;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.220-220
    • /
    • 2015
  • Water, energy, and food security already became a risk that threatens people around the world. Increasing of resources demand, rapid urbanization, decreasing of natural resources and climate change are four major problems inducing resources' scarcity. Indeed, water, energy, and food are interconnected each other thus cannot be analyzed separately. That is, for simple example, energy needs water as source for hydropower plant, water needs energy for distribution, and food needs water and energy for production, which is defined as W-E-F nexus. Due to their complicated linkage, it needs a computer model to simulate and analyze the nexus. Development of a computer simulation model using system dynamics approach makes this linkage possible to be visualized and quantified. System dynamics can be defined as an approach to learn the feedback connections of all elements in a complex system, which mean, every element's interaction is simulated simultaneously. Present W-E-F nexus models do not calculate and simulate the element's interaction simultaneously. Existing models only calculate the amount of water and energy resources that needed to provide food, water, or energy without any interaction from the product to resources. The new proposed model tries to cope these lacks by adding the interactions, climate change effect, and government policy to optimize the best options to maintain the resources sustainability. On this first phase of development, the model is developed only to learn and analyze the interaction between elements based on scenario of fulfilling the increasing of resources demand, due to population growth. The model is developed using the Vensim, well-known system dynamics model software. The results are amount of total water, energy, and food demand and production for a certain time period and it is evaluated to determine the sustainability of resources.

  • PDF

Dynamic Model of a Long-term Water Demand Using System Dynamics (시스템 다이나믹스를 이용한 도시 물수요 장기 예측의 동적 모델 연구)

  • Lee, Sangeun;Choi, Dongjin;Park, Heekyungh
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.1
    • /
    • pp.75-82
    • /
    • 2007
  • When one forecasts urban water demand in a long-term, multivariate model can give more benefits than per capita requirement model. However, the former has shortcomings in that statistically high explanatory power cannot be obtained well, and change in customer behavior cannot be considered. If the past water consumption effects the future water demand, dynamic model may describe real water consumption data better than static model, i.e. the existing multivariate model. On these grounds, this study built dynamic model using system dynamics. From a case study in Seoul and Busan city, dynamic model was expected to forecast water demand more descriptively and reliably.

Forecasting the Long-term Water Demand Using System Dynamics in Seoul (시스템 다이내믹스법을 이용한 서울특별시의 장기 물수요예측)

  • Kim, Shin-Geol;Pyon, Sin-Suk;Kim, Young-Sang;Koo, Ja-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.2
    • /
    • pp.187-196
    • /
    • 2006
  • Forecasting the long-term water demand is important in the plan of water supply system because the location and capacity of water facilities are decided according to it. To forecast the long-term water demand, the existing method based on lpcd and population has been usually used. But, these days the trend among the variation of water demand has been disappeared, so expressing other variation of it is needed to forecast correct water demand. To accomplish it, we introduced the System Dynamics method to consider total connections of water demand factor. Firstly, the factors connected with water demand were divided into three sectors(water demand, industry, and population sectors), and the connections of factors were set with multiple regression model. And it was compared to existing method. The results are as followings. The correlation efficients are 0.330 in existing model and 0.960 in SD model and MAE are 3.96% in existing model and 1.68% in SD model. So, it is proved that SD model is superior to the existing model. To forecast the long-term water demand, scenarios were made with variations of employment condition, economic condition and consumer price indexes and forecasted water demands in 2012. After all scenarios were performed, the results showed that it was not needed to increase the water supply ability in Seoul.

Reviewing Contract of the Buenosaires Water Concession Case with System Dynamics (시스템 다이나믹스를 이용한 부에노스아이레스 수도사업 양여계약사례의 고찰)

  • Lee, Sangeun;Cha, Donghoon;Park, Heekyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.104-114
    • /
    • 2006
  • Recently, the PPP (Public-Private-Participate) program on water and wastewater services in Korea has been under an active debate. However, the controversy has reached the limits of getting more valuable implications from past foreign experience beyond conceptual and/or qualitative case studies. This paper analyze scientifically and quantitatively the Buenos Aires Water Concession Project focused on propriety of the contract using system dynamics modeling. The results show that Buenos Aires's Project has several problems in the contract phase even though Argentina government spent much time to design it. Analysis results suggest that estimation of K factor considering delay effect and future uncertainty, reduction of the first fixed terms of contract, etc., are needed for a proper contract.

Development of a system dynamics computer model to assess the effects of developing an alternate water source on the water supply systems management (상수도 시스템 운영에 대한 대체 상수원 개발의 효과를 모의하기 위한 시스템다이내믹스 컴퓨터 모델의 개발)

  • Park, Suwan;Jung, So-Yeon;Sahleh, Vahideh
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.6
    • /
    • pp.755-763
    • /
    • 2014
  • In this paper, a System Dynamics(SD) computer simulation model has been developed to assess the effects of developing and providing an alternate water source. A water service index was also developed to estimate the level of overall customer satisfaction on water supply service. Data from the Busan water supply service and the Korea Development Institute regarding the Nak Dong river bank storage development were utilized during the modeling processes. Some important indicators of the system under study were analyzed by the simulations of development of the alternate water source for Busan. The developed SD model and the water service index can be further utilized as a tool that can assess the extent and timing of an additional service improvement project.