• Title/Summary/Keyword: Water Supply Network

Search Result 219, Processing Time 0.023 seconds

Estimation of Deterioration Assessment for Weighting Factors in Pipes of Water Supply Systems Using Analytic Hierarchy Process (계층적분석과정을 이용한 상수관로의 노후도 평가를 위한 항목별 가중치 산정)

  • Kim, Eung-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.15-21
    • /
    • 2008
  • The purpose of this study is to estimate deterioration assessment for weighting factors in pipe network for which each local selfgovernment takes rehabilitation and replacement work at present time. Deterioic hierarchy process(AHP), calculates the weighting factors. The appropriate marks matrix of sixteen deterioration factors are made for the precise decision standard of pipe condition through the result of this analysis. The marks matrix of sixteen deterioration factors can solve the complicated decision making problems of pipe rehabilitation workration factors in the pipe network might be influenced by local factors, such as province, location, or land use, in water supply systems. In this study, the sixteen deterioration factors are determined suitable for domestic situation based on the pipe deterioration factor data inside and outside of the country. Also, we select persons in charge of calculating the detail weighting factors and do survey about important level of each deterioration factors. Delphi method, a question survey method applying the analyts.

Optimized Boreoung Dam Emergency Diversion Tunnel Operation Rule Study, considering Water Quantity-BOD-Electric Power in Boreong Dam Water Supply Network (보령댐계통 물 공급망 운영에 있어서의 수량-수질(BOD)-전력을 고려한 보령댐 비상도수로 최적운영 Rule 연구)

  • Lim, Gun Muk;Kim, Sung Hoon;Ryoo, Kyung Sik;Jeong, Kwan Su
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.42-42
    • /
    • 2020
  • 충남서부권은 기상이변으로 강수량이 적고 가뭄이 심화되고 있는 반면, 신규수원 개발 적지 부족 등 용수공급에 어려움을 겪고 있다. 2015년부터 2016년까지 가뭄시 비상용수공급을 위해 비상도수로를 건설하였다. 이 비상도수로는 보령댐의 가뭄단계 상황기준으로 운영중에 있다. 가뭄단계 상황이 경계단계에 진입하면 도수로를 가동시작하여 관심단계 회복시에 중단하게 된다. 동 연구는 현재 운영중인 보령댐도수로의 가동Rule을 수량(이수안전도), 수질(BOD), 전력비용을 고려하여 시나리오별로(상시도수, 총 도수량대비 25%, 50%, 75%, 100%) 도수할 때 어느 도수 Rule이 수량-수질-에너지 넥서스 측면에서 가장 유리한지를 밝혀 내고자 하였다. 연구에 사용된 기초자료는 보령댐도수로 준공이후 2016년~2019년 도수실적 자료를 이용하였다. 수량(이수안전도) 검토는 MODSIM을 활용하였고, 수질개선효과는 실측 BOD를 기준으로 도수조건별로 오염부하량으로 검토하였다. 전력비용은 금강원수 도수년도별로 산정하여 분석하였다. 추가 연구결과를 통해 가뭄단계 상황기준, 월별 물관리 여건을 고려하여 기준향후 비상도수로 운영에 있어서 수량절량, 수질개선, 전력비용 절감을 기대할 수 있을 것이다.

  • PDF

Assessment of Agricultural Water Supply Capacity Using MODSIM-DSS Coupled with SWAT (SWAT과 MODSIM-DSS 모형을 연계한 금강유역의 농업용수 공급능력 평가)

  • Ahn, So Ra;Park, Geun Ae;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.507-519
    • /
    • 2013
  • This study is to evaluate agricultural water supply capacity in Geum river basin (9,865 $km^2$), one of the 5 big river basin of South Korea using MODSIM-DSS (MODified SIMyld-Decision Support System) model. The model is a generalized river basin decision support system and network flow model developed at Colorado State University designed specifically to meet the growing demands and pressures on river basin management. The model was established by dividing the basin into 14 subbasins and the irrigation facilities viz. agricultural reservoirs, pumping stations, diversions, culverts and groundwater wells were grouped and networked within each subbasin and networked between subbasins including municipal and industrial water supplies. To prepare the inflows to agricultural reservoirs and multipurpose dams, the Soil and Water Assessment Tool (SWAT) was calibrated using 6 years (2005-2010) observed dam inflow and storage data. By MODSIM run for 8 years from 2004 to 2011, the agricultural water shortage had occurred during the drought years of 2006, 2008, and 2009. The agricultural water shortage could be calculated as 282 $10^6m^3$, 286 $10^6m^3$, and 329 $10^6m^3$ respectively.

Regional Groundwater Flow Characteristics due to the Subway System in Seoul, Korea (지하철에 의한 서울특별시 광역 지하수 유동 특성)

  • Shin, Esther;Kim, Hyoung-Soo;Ha, Kyoochul;Yoon, Heesung;Lee, Eunhee
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.3
    • /
    • pp.41-50
    • /
    • 2015
  • Hydrogeologic environment of the Mega City such as Seoul, suffers from rapid changes caused by urbanization, construction of underground subway or buildings, and contaminant loading by diverse anthropogenic activities. Understanding the present condition of groundwater environment and water budget is necessary to prevent natural and manmade disasters and to prepare for sustainable water resource management of urban environment. In this study, regional groundwater flow and water budget status of Seoul was analyzed using numerical simulation. Modeling result indicated that groundwater level distribution of Seoul generally followed the topography, but the significant decreases in groundwater level were observed around the subway network. Steady-state water balance analysis showed groundwater recharge by rainfall and leakage from the water supply network was about 550,495 m3/day. Surface water inflow and baseflow rate via Han River and major streams accounted for 799,689 m3/day and 1,103,906 m3/day, respectively. Groundwater usage was 60,945 m3/day, and the total groundwater leakage along the subway lines amounted to 114,746 m3/day. Modeling results revealed that the subway could decrease net groundwater baseflow by 40%. Our study result demonstrated that the subway system can have a significant influence on the groundwater environment of Seoul.

Research on Damage Identification of Buried Pipeline Based on Fiber Optic Vibration Signal

  • Weihong Lin;Wei Peng;Yong Kong;Zimin Shen;Yuzhou Du;Leihong Zhang;Dawei Zhang
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.511-517
    • /
    • 2023
  • Pipelines play an important role in urban water supply and drainage, oil and gas transmission, etc. This paper presents a technique for pattern recognition of fiber optic vibration signals collected by a distributed vibration sensing (DVS) system using a deep learning residual network (ResNet). The optical fiber is laid on the pipeline, and the signal is collected by the DVS system and converted into a 64 × 64 single-channel grayscale image. The grayscale image is input into the ResNet to extract features, and finally the K-nearest-neighbors (KNN) algorithm is used to achieve the classification and recognition of pipeline damage.

The Cost Analysis of Network by The Function of Automatic Link Recovery (자동링크복구 기능에 따른 네트워크 비용분석)

  • Song, Myeong-Kyu
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.6
    • /
    • pp.439-444
    • /
    • 2015
  • The Social infrastructure systems such as communication, transportation, power and water supply systems are now facing various types of threats including component failures, security attacks and natural disasters, etc. Whenever such undesirable events occur, it is crucial to recover the system as quickly as possible because the downtime of social infrastructure causes catastrophic consequences in the society. Especially when there is a network link-failure, we need an automatic link-recovery method. This means that customers are aware of network failures that can be recovered before you say that service. In this paper, we analysis the relation between Auto-recovery performance and cost.

Vulnerability Evaluation for Water Supply of Irrigation Facilities: Focusing on Dangjin-si, Yesan-gun, Cheongyang-gun, South Korea (밭관개 시설물의 용수공급에 대한 취약성 평가 - 당진시, 예산군, 청양군을 대상으로 -)

  • Shin, Hyung-Jin;Kwon, Hyung-Joong;Lee, Jae-Yeong;Lee, Jin-Heong;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.6
    • /
    • pp.33-42
    • /
    • 2018
  • This study evaluated the vulnerability of irrigation water supplied to the crops. The target areas were selected as Dangjin-si, Yesan-gun, and Cheongyang-gun. The survey items of the climate exposure were annual precipitation and rainless days. The sensitivity survey items were cultivation area, groundwater level, evapotranspiration and groundwater consumption. The survey items of the adaptability were Number of groundwater well and Water supply ratio. The survey methods for these items were investigated in a variety of ways, including "National Climate Data Service System", "Korean Statistical Information Service", "National ground water monitoring network in korea annual report" and "Chungcheongnam-do Statistical Yearbook", "HOMWRS". Vulnerability assessment results were rated within the range of 0~100 points. The first grade was rated 0-25, the second grade 26-50, the third grade 51-75, and the fourth grade 76-100. And the lower the score, the lower the vulnerability. As a result, Cheongyang-gun showed a high vulnerability of over 50 points, Dangjin-si showed a low vulnerability rating of 31.20 points and a Yesan-gun of 36.00 points.

Development of microfluidic green algae cell counter based on deep learning (딥러닝 기반 녹조 세포 계수 미세 유체 기기 개발)

  • Cho, Seongsu;Shin, Seonghun;Sim, Jaemin;Lee, Jinkee
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.2
    • /
    • pp.41-47
    • /
    • 2021
  • River and stream are the important water supply source in our lives. Eutrophication causes excessive green algae growth including microcystis, which makes harmful to ecosystem and human health. Therefore, the water purification process to remove green algae is essential. In Korea, green algae alarm system exists depending on the concentration of green algae cells in river or stream. To maintain the growth amount under control, green algae monitoring system is being used. However, the unmanned, small and automatic monitoring system would be preferable. In this study, we developed the 3D printed device to measure the concentration of green algae cell using microfluidic droplet generator and deep learning. Deep learning network was trained by using transfer learning through pre-trained deep learning network. This newly developed microfluidic cell counter has sufficient accuracy to be possibly applicable to green algae alarm system.

Operational Improvement of Small Urban Storm Water Pumping Station (1) - Simulation of Flood Hydrograph using GIS-based Hydrologic Model (도시 소유역 배수펌프장 운영개선 방안 연구 (1) - GIS 기반 수문모형에 의한 홍수유출수문곡선의 재현)

  • Gil, Kyung-Ik;Han, Jong-Ok;Kim, Goo-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.682-686
    • /
    • 2005
  • Recently some urban areas have been flooded due to heavy storm rainfalls. Though major causes of these floodings may be attributed to localized heavy rainfalls, other factors are related to urban flooding including deficiency of storm sewer network capacity, change of surface runoff due to covered open channels, and operational problems of storm drainage pump stations. In this study, hydrologic and hydraulic analysis of Sutak basin in Guri city were carried out to evaluate flooding problems occurred during the heavy storm in July, 2001. ArcView, a world most widely used GIS tool, was used to extract required data for the hydrologic analysis including basin characteristics data, concentration times, channel routing data, land use data, soil distribution data and SCS runoff curve number generation from digital maps. HEC-HMS, a GIS-based runoff simulation model, was successfully used to simulate the flood inflow hydrograph to Sutak pumping station.

A Study on a Remote Leakage Sensing System in Waterworks Network (원격 상수도관망 누수감지 시스템에 관한 연구)

  • Kang, Byung-Mo;Hong, In-Sik
    • The KIPS Transactions:PartD
    • /
    • v.11D no.6
    • /
    • pp.1311-1318
    • /
    • 2004
  • Demand of water is increased according to city centralism phenomenon in population and development. In this progress, guarantee of enough water is important factor for water supply policy. For the detection of exact water leakage point, an epochal sensing technique using computer and internet is required, so, the water pipe having sensing wire and sensing technology using TDR(Time Domain Reflectometer), is proposed in this paper. For the prove of effectiveness of this system, pilot system using 300mm 3-layer coated steel pipe is made and tested.